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D4.1 – Experimental scenarios including evaluation criteria 
and methodology  

 

Executive Summary 
This document is the final version of ECODE deliverable D4.1, which 
describes experimental scenarios including evaluation criteria and 
methodology. The experimental scenarios proposed here continue from the use 
cases as defined in D3.1. Building on initial assessment and proof-of-
concept experimentation performed within WP3, WP4 takes into account real-
world evaluation criteria such as stability and scalability. Attention to 
scientific validity ensures the relevance of experimental outcomes. 
 
WP4 comprises the second of two experimental phases spanning from M18 
(Feb.2010) to M31 (Mar.2011) as outlined by Technical Annex I, part B. The 
first experimental phase (WP3) examined the applicability, validity and 
feasibility of a machine learning engine for several use cases. During the 
second phase however, experimentation is taken beyond the initial 
assessment and validation of machine learning combined with advanced 
networking techniques which were performed in WP3. For this, the 
experimentation converges around the common Machine Learning Engine (MLE) 
platform detailed in D2.2 “Cognitive Engine – Experimental low-level 
design”. 
 
First phase experimentation consisted of a number of use cases distributed 
over three parallel technical objectives. Its results were included in 
D3.3, D3.5 and D3.7 (related to TO1, TO2 and TO3 respectively). Whereas WP3 
tasks were defined through these technical objectives, WP4 tasks are 
defined by experimentation goals. Nevertheless, WP4 builds further upon 
these use cases.  
 
This deliverable D4.1, as the first WP4 deliverable, describes the 
experimental scenarios for the second experimental phase. This identifies 
the scenarios considered within WP4 (some based on WP3 scenarios, some 
new). Also, it will allow answering questions regarding (1) Technical 
Objectives, (2) Content, (3) Description and (4) Scientific Validity of 
each of the experimental scenarios. The template used to obtain this 
information is available in Annex 1. Each experiment description is 
structured around the following elements: 
 

- Detailed use case description, performance objectives, (technical 
and non-technical) constraints, and description of the expected 
results; 

- Description of the experimental evaluation criteria and metrics; 
- Description of the experimental scenario description, setup, tools, 

platform and methodology; 
- Scientific validity in terms of verifiability, reliability as well 

as repeatability and reproducibility. 
 
The second experimental phase too will be conducted in physical 
experimental infrastructures. For most experimental scenarios, this is the 
iLab.t physical experimental facility, located at IBBT premises in Ghent, 
Belgium. 
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1 Introduction 
The focus of the ECODE experimental research project is to introduce a new 
Internet architectural component realized by means of a cognitive system 
and that preserves the original Internet design principles, including the 
end-to-end principle and its transparency, to sustain growth of an Internet 
that remains in line with what it supposed to deliver to the end-user and 
that performs in accordance to what it is expected to deliver to the end-
user. As the purpose of this new architectural component is to sustain 
growth of an Internet that performs in accordance to what it is supposed to 
deliver to the end-user and performs according to these expectations in 
order to satisfy the end-users, large-scale testing and validation is 
explicitly in the scope of this research project. Combined experimentation 
will allow determining whether composing the Internet high-level goals - 
societal, economical, etc. - can be translated into lower-level objectives 
(in terms of functionality and performance) and constraints (both technical 
and non-technical) and enforced via the newly introduced machine learning 
component as part of the Internet routing system. 
 
This second experimental phase will be conducted in physical experimental 
infrastructures. For most experimentation, the machine learning engine will 
be experimented and its performance evaluated by means of a dedicated and 
fully controlled emulation platform: the iLab.t experimental facility, 
located at IBBT premises.  
 
1.1 Relation to other ECODE deliverables 
 
This deliverable describes the experimental scenarios themselves, including 
methodology, evaluation criteria, platform, tools, input data etc., and 
this on a network (or scenario) level. Regardless of exact system 
architecture and tools used, the experimental scenarios included here all 
use the common XORP machine learning engine platform, which is detailed in 
Deliverable D2.2 “Cognitive Engine - Experimental low-level design”. 
Meaning, D2.2 provides a system level description of the experimentation, 
stating the interfaces between machine learning engine (MLE), routing 
engine (RE), forwarding engine (FE), management plane (MP) and translation 
and communication (TCI) component. 
 
As WP3 and WP4 entail the first and second experimental phase respectively, 
this deliverable serves a function similar to the one of Deliverable D3.1 
“Experimental Plans and Scenarios”. Some of the experimental scenarios are 
a continuation of those already included in D3.1. WP3 defined three 
technical objectives (TO). Evaluation of those TO1, TO2, TO3 was included 
in deliverables D3.3, D3.5 and D3.7 respectively. As WP4 considers a common 
machine learning engine platform, an integrated approach is followed for 
the technical objectives, while WP4 tasks are defined towards goals. 
Comparison of WP3 and WP4 technical objective use cases is provided in a 
further section. Where necessary, the experimental scenario description 
will refer back to relevant D3.1 descriptions. 
 
1.2 Scientific validity 
 
In WP4, experimentation goes beyond initial proof-of-concept of machine 
learning as an advanced networking technique. Implementation and evaluation 
of actual online machine learning is envisioned. The targeted evaluation 
criteria will allow assessment of stability and scalability of these 
techniques in realistic networking scenarios. 
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In order to accept experimentation as a viable track in determining 
performance and evaluation metrics, the experimental scenario and 
methodology should be scientifically valid. Scientific validity includes 
verifiability, reliability, repeatability and reproducibility. 
 
Verifiability:  an experiment is verifiable if the outcomes can be 

verified against a formal model, meaning they match 
models that describe the outcome as a function of the 
experiment input parameter. In the case of functional 
analysis, experiment flow and outcome match a prescribed 
list of actions and/or output. 

 
Reliability: reliability means the experiment and outcome are valid 

for a certain time run. As a minimum requirement, this 
means that the components of the experiment remain 
functional (i.e., do not crash or break down) during this 
time period. Furthermore, results and outcomes are 
reliable if they remain consistent during that time 
period (within a certain well-defined range). 

  
Repeatability: the term repeatability is used when repeating the 

experiment within the same experimental scenario, i.e., 
same platform, experimental facility, testbed, input 
parameters, etc. The experiment is repeatable when 
different runs of the experiment (repetitions) yield the 
same outcome and results. Correct experimental 
methodology and usage of models, algorithms and output 
data processing is required in order to guarantee 
repeatability. 

 
Reproducibility: an experiment is reproducible when it can be reproduced 

within a similar, but different experimental setup. This 
can mean different platform, facility. Typically 
reproducibility comes into play when a third party 
performs the same experiment in order to verify 
scientific validity of the outcome and results of the 
experimental scenario. 

 
Verifiability, reliability, repeatability and reproducibility of an 
experimental scenario depend heavily on outcome values, which are in some 
cases measured only within a certain range, and not exactly. Actual 
experiments –including emulation experiments- often include some form of 
non-determinism. The experimentation scenarios may validate only under 
certain constraints (this is especially the case for repeatability and 
reproducibility). Where necessary, this is mentioned in the scenario 
descriptions. 
 
1.3 Experimental scenarios 
 
Within WP3, three technical objectives were defined, each consisting of 
several use cases which cover different problems in representative areas, 
identified as Internet architectural and design challenges (such as 
security, controllability, routing, and accountability). 
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Table 1. List of WP3 use cases 
TO Case Name 

Case a1 Adaptive traffic (packet/flow) sampling 
Case a2 Path performance monitoring 

TO1 (D3.3) 

Case a3 Distributed anomaly/intrusion detection 
Case b1 Informed path selection 
Case b2 Network-driven recovery and resiliency 

TO2 (D3.5) 

Case b3 Profile-based accountability 
TO3 (D3.7) Case c Inter-domain routing/BGP 
 
For WP4, these following use cases are defined within each of the technical 
objectives (as per the Technical Annex): 
 

Table 2. List of WP4 use cases 
TO Case Name 

Case a1 Adaptive traffic sampling and management 
Case a2 Path performance monitoring 

TO1  

Case a3 Intrusion and attack / anomaly detection 
Case b1 Path availability 
Case b2 Network recovery and resiliency 

TO2  

Case b3 Profile-based accountability 
Routing system scalability TO3  Case c 
Routing system quality 

 
The remainder of this deliverable describes experimental scenarios each 
fitting within one of these use cases, clustered into four groups: 

- Monitoring and security: corresponds to use cases a1, a2, and a3, 
i.e., the development of an autonomous system for network 
monitoring, traffic management, and anomalies detection. 

- Routing and recovery: corresponds to use cases b1 and b2, i.e., the 
development of a solution for ranked path selection and fast network 
recovery.  

- Accountability: corresponds to use case b3, i.e., the development of 
a solution for correlating profiles with subscribers’ usage and 
their impact on the network resources. 

- Routing system: this corresponds to use case c, the development of a 
solution for speeding up BGP path exploration, and determining 
quality (correctness) of the solution. 

 
Each experimental scenario description includes an experiment overview and 
objectives. A detailed listing of (technical and non-technical) 
constraints, expected results, evaluation criteria and metrics, setup, 
tools, platform and methodology follows. Finally, scientific validity and 
any constraints thereupon are stated. 
 
The template used to obtain this information is available in Annex 1. 
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2 Monitoring and security 
 
2.1 Adaptive traffic sampling and management 
 
2.1.1 Running monitoring applications based on adaptive sampling 
 
Experimental scenario description 
Title  Running monitoring applications based on an adaptive sampling 

approach 
Technical objective The scenario builds further on the use case concerning 

adaptive traffic sampling (TO1). 
Machine learning is used to optimally configure the sampling 
rate in monitors so as to reach the best measurement accuracy 
at limited overhead. The information on flows will then be 
used to manage them appropriately inside routers. 

Participants INRIA, IBBT 
 
Content 
Short description  We plan to deploy our architecture components on top of IBBT 

iLab.t test bed. Namely our Traffic Monitoring and Sampling 
Service and our Data Collection and Analysis service. The 
later is supposed to be a centralized component that (i) 
collects NetFlow reports sent by the monitoring and sampling 
service installed in each monitor of the selected topology 
and (ii) runs our ML algorithms which performs a given 
monitoring solution and updates accordingly the monitor’s 
configuration at runtime.  
 
Then, using a range of topologies (GEANT and Abilene like 
topologies), we want to evaluate different monitoring 
applications. 

Expected result(s) Our system is intended to provide an estimation of network 
and traffic status. This estimation is afterwards used to 
find a better configuration of monitors and controllers that 
reduces measurements errors and improve the management of 
flows inside routers. For instance, our platform can optimize 
the monitoring to carry out the following measurements: 

•  The greediest users  
•  The number of packets per flow  

 
Experimentation 
Evaluation criteria 
and metrics  

The following evaluation criteria will be used: 
• The network status estimation accuracy  
• The traffic collection overhead 
• In addition, the convergence time of the estimation and 
the computation time are also two important parameters 
that will be used as metric 
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Experimental scenario: 
description, tools, 
configuration and 
running conditions 

System structure and platform: 
 
We will use IBBT iLab.t test bed running Linux. We will 
install within the different routers our traffic monitoring 
and sampling service. The later captures real traffic 
promiscuously using the Pcap library. Then, using its 
sampling module, it decides either to consider the captured 
packet or not for updating the list of maintained flows. 
Once some conditions (flows’ timers, number of constructed 
flows, etc.) are satisfied our traffic monitoring services 
will send NetFlow reports towards our data collection and 
analysis service. We will need to install the later service 
in a separated central node.  
 
Network topology: 
 
We need to setup either GEANT or Abilene like topologies 
including 20 routers in average in addition to one central 
node which will run our data collection and analysis service 
(including the ML algorithm). 
 
Experimental configuration: 
 
Once the topology is available and our services are deployed, 
we will need to configure locally our monitoring and sampling 
service and to point them to the central collector node. 

Methodology Methodology to obtain experimental data: 
 
The experimentation methodology involves: 

- Setting up an experimental topology (on the iLab.t 
test bed). 

- Deploying our traffic sampling and monitoring service 
within all nodes considered as monitors. 

- Deploying our data collection and analysis service on 
a central separated node. 

- Locally configuring the different services. 
- Applying any traffic. We can either use a common 

traffic with other partners or run ours using either 
iLab.t test bed traffic generation tools (if existing) 
or some third party tools like D-ITG (the Distributed 
Internet Traffic Generator, 
http://www.grid.unina.it/software/ITG/). 

- Extracting experimental data. 
 
Three main methodology tracks will be followed: 
 

- Proof-of-concept: functional analysis of the NetFlow 
reports collection from the different monitors, the 
execution of our adaptive sampling algorithm within 
our central service, and finally the re-configuration 
of the deployed monitoring points. The planned public 
demonstration will make use of this track. 
 

- Performance analysis: by running batches of 
experiments for various configuration parameters, and 
experimental topologies, we will extract performance 
metrics such as the network status estimation accuracy 
and the traffic collection overhead.  
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- Scalability analysis: for this track we concentrate on 

topology size and the number of interfaces to be 
monitored and we look at the resulting traffic 
collection overhead and the time taken by our ML 
algorithm to react and adjust monitors’ configuration.  

 
Scientific validation 
Verifiability One of the applications that we want to verify consists on 

estimating the traffic generated by each Autonomous System 
(AS). Once done, we can verify whether the weight we have 
already associated to each AS is reflected in terms of the 
amount of the traffic it generates.  
We can also verify that the overhead resulting from the 
experimentation we run does not exceed the target overhead 
value that we have already fixed. 

Reliability 1) Indicate key issues that may impact reliability. Which 
external factors may invalidate the experimental results? 
2) The collector node should be powerful enough (CPU, Memory 
…) in order to cope with the big amount of the traffic it 
collects from the different monitors and process. 
If some delay is introduced - when processing the collected 
traffic and extracting results – the decisions that the 
collector would take in order to adapt the sampling rates 
within the different monitors will be out of date.   

Repeatability and 
reproducibility 

Unless the background traffic changes, we can reproduce the 
same experimentation on the iLab.t platform. 
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2.2 Path performance monitoring  
2.2.1 Validation of the performance and accuracy of the monitoring system 
 
Use case scenario description 
Title  Validation of the performance and accuracy of the monitoring 

system 
Technical objective Technical Objective 1. This objective relates to the 

improvement of the manageability and diagnosability of the 
Internet. 

Participant(s) This scenario will be performed by LAAS/CNRS for the passive 
monitoring system. 

 
Content 
Short description We want to setup an emulation network, generate traffic and 

verify that our monitoring system is reliable, i.e., it 
captures and reports every packet correctly (no missing 
packet, no bit error, accurate timestamp). 

Expected results The expected outcome of this setup is to build a reliable 
passive monitoring system (i.e. no packet loss, no bit error, 
accurate timestamp) that provides accurate and fast software-
based monitoring and measurement capability.  

 
Experimentation 
Evaluation criteria 
and metrics  

The two main criteria to enforce are: packet loss (i.e. 
packets that are not captured) and accurate timestamps for 
each captured packet. The two metrics we will use are: the 
percentage of captured packets over the total number of 
packets and the error on values of timestamps. 
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Experimental 
scenario: models, 
platform, 
configuration, 
traffic, constraints 

Machine Learning Engine: 
 
The passive monitoring system aims at capturing packets on a 
link and providing it online to the cognitive engine.  
 
System structure and platform: 
 
For validating the passive monitoring system, we need, for 
providing a ground truth, a DAG system. Because of this 
requirement in terms of a trustable hardware transparent 
traffic capturing system, the evaluation is run on the 
LaasNetExp experimental platform (Ilab does not provide such 
hardware for capturing traffic).  
 
The DAG system has been previously validated during the last 
decade and proved to be very fast in capturing packets (and 
then avoiding capture loss when the hosting machine is well 
provisioned) with a very accurate GPS based timestamping 
mechanisms. CNRS owns several of these DAG systems on its 
LaasNetExp experimental platform. They will then be used to 
evaluate the performance of accuracy of the passive software 
monitoring system specifically designed and developed for 
ECODE. 
 
Network topology: 
 
Practically speaking, our experimental scenario consists of 
testing the monitoring tool on one host (to assess the 
reliability of the capture and timestamping mechanisms). 
 
For the validation, the following topology is be used. 
 

  
Experimental configuration and input description: 
 
We need to generate realistic traffic. For this purpose, we 
will either replay previously captured traces or generate 
traffic based on a realistic traffic model (as the Gamma-
Farima one that was developed in the framework of the French 
MetroSec project by ENS Lyon and LAAS-CNRS). 
 
The Operating system running on host is a Linux distribution. 
The Tool to replay traces is either TCP Replay, or a tool 
specifically developed by ourselves: nonglrd_gen. 
 
Constraints: 
 
We need a ground truth when capturing traffic to compare with 
the one capture by our software monitoring tool. This 
constraint is solved by the use of DAG systems available at 
LAAS. 
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Methodology Methodology to obtain experimental data: 
 
Validating a monitoring system is quite impossible without 
another trustable monitoring system. The principle of this 
validation then relies on the use of a DAG system for 
validating our software global monitoring and measurement 
system. DAG system will provide the ground truth for assessing 
our software monitoring tool. 
 
For evaluating the monitoring entity we need to use a DAG 
system on the same link, close from the monitoring entity to 
be evaluated. Both tools capture the traffic. We then compare 
the two traffic trace files, the DAG one being the ground 
truth, and then evaluate our software monitoring tool 
performance level. 
 
Experimental data processing methodology and analysis: 
 
We develop all necessary tools for analyzing them. These tools 
have to compare the traces captured by a software monitoring 
entity and the ones captured by DAG systems. It will consist 
in checking that all packets are reported, and compute 
difference between related timestamps. 

 
 
Scientific validation 
Verifiability DAG systems provide a ground truth about the traffic which 

has been captured. The DAG trace is the reference which our 
software based captures have to be compared against. 

Reliability The DAG system has been proved to be very accurate and 
reliable. It guaranties that our validation will be accurate 
and reliable.  

Repeatability and 
reproducibility 

As we are replaying traces or generating our own traffic 
based on a model, we can repeat the experiments as many times 
as needed. 
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2.3 Intrusion and attack / anomaly detection 
2.3.1 Evaluation of the Anomaly Detection System (ADS) 
 
Use case scenario description 
Title  Evaluation of the Anomaly Detection System (ADS) 
Technical objective Technical Objective 1. This objective relates to the 

development of an anomaly detection system to improve Internet 
security. By the proposed technique, we expect to improve the 
performance in terms of false negative and false positive 
rates 

Participant(s) This scenario will be performed by LAAS/CNRS with a possible 
collaboration with ULANC if distributed anomaly detection is 
considered. 

 
Content 
Short description  The objective is to evaluate the two proposed contribution 

families to the improvements of the Anomaly Detection System 
(ADS). The latter uses ML techniques in order to improve the 
false alarm ratio traditionally encountered when using ADS in 
the actual Internet. Thanks to ML, it is also aimed at 
detecting 0-day anomalies. Here, the objective is thus 
twofold:  
1. Evaluate if the local Machine Learning (ML) techniques 

aiming at better characterizing the traffic provide more 
accuracy and efficiency in decision making;  

2. Evaluate whether the system is able to detect anomalies it 
does not know and is able to increase its knowledge 
database 

Expected results We expect to find lower false alarm ratios thanks to ML 
techniques which are used for continuously learning about the 
traffic characteristics. We also expect to generate new 
detection rule as a reaction do the detection of previously 
unknown anomalies. 

 
Experimentation 
Evaluation criteria 
and metrics  

The performance of the ADS will be evaluated on the false 
negative and false positive rates. This is valid for both 
known and 0-day anomalies. 
 
The false negative rate is the ratio between the number of 
undetected attacks over the total number of attacks. The false 
positive rate is the ratio between the number of false alarms 
over the total number of attacks. 

Experimental 
scenario: models, 
platform, 
configuration, 
traffic, constraints 

Machine Learning engine: 
 
We develop a system including several algorithms using ML 
techniques (in particular clustering techniques) for detecting 
anomalies (previously known or even unknown – 0day anomalies) 
on a single link. These system and algorithms are describes in 
deliverables D3.2 and D3.3. 
 
System structure and platform: 
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We will use several machines connected to a network on which 
the access point is monitored by our ADS. These machines will 
generate anomalies, e.g. flash crowd, DDoS attacks, of various 
kinds, shapes and intensities. The ADS responses will then be 
logged and its detection performance evaluated as presented in 
the following. 
We will use the LaasNetExp platform for small topologies (and 
for setting up the methodology), and the Ilab cluster facility 
for larger ones. 
 
Network topology: 
 
For evaluating the ADS, several network topologies with 
different numbers of machines and different interconnection 
topology could be necessary to emulate different aggregation 
schemas. We will start from 2 machines generating traffic, and 
go up to maybe 10 sources or more if possible. 
 
Experimental configuration and input description: 
 
Link characteristics on the topology will be the ones 
classically observed on actual networks, except that we will 
not introduce any loss as they are already represented in the 
replayed traces when a packet is lacking. The delay 
distribution can be something very simple as a classical 
exponential function or any sub-exponential functions 
generally observed in the Internet path delays as Weibull or 
Pareto distributions. 
 
It is important in such a scenario to be able to evaluate the 
ADS based on documented traces, i.e. traces for which we know 
at what moment, and for what duration there are anomalies in 
the traffic, what kind of anomaly, their characteristics (as 
intensity for example, number of sources or destination, 
source and destination addresses, source and destination 
ports, etc.). We will use the MetroSec dataset for this 
purpose which is a set of traces containing documented 
anomalies of any kinds. The MAWI dataset could be used as well 
(despite it is not fully documented – anyway, it contains real 
anomalies while the ones of the MetroSec dataset are kind of 
artificial). 
 
We also need a tool for injecting replayed traces in the 
emulation network or use existing solutions as tcpreplay. 
 
Constraints: 
 
First, we need traces containing documented anomalies. The 
MetroSec dataset provides a very reliable ground truth. MAWI 
could also be used because the anomalies are not artificial. 
Anyway, the anomaly documentation work can be prone to errors. 
 
Second, a measurement and monitoring system is the basis for 
providing inputs to the machine learning algorithms used in 
the local ADS. 

Methodology Methodology to obtain experimental data: 
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The ADS has to be evaluated with normal traffic without 
anomalies, and with anomalous traffic. The anomalies in this 
traffic can be legitimate as flash crowds or alpha flows, but 
also illegitimate as DoS attacks, scanning, failures, 
misconfigurations, etc. Among the DoS attacks or scanning 
strategies, it would be requested to experiment as many 
different kinds of attacks as possible (all kinds of flooding, 
smurf, etc.).  
We will use several machines connected to a network on which 
the access point is monitored by our ADS. These machines will 
generate anomalies, e.g. flash crowd, DDoS attacks, of various 
kinds, shapes and intensities. The ADS responses will then be 
logged and its detection performance evaluated as presented 
right over. 
 
The evaluation relies on calculating the false negative and 
false positive rate based the ADS alarms raised when analyzing 
the traffic of replayed documented anomalous traces. 
 
The experimental data produced by the ADS under evaluation are 
the log files of alarms raised by the local and global ADS. 
 
Experimental data processing methodology and analysis: 
 
The obtained log files will be compared with the list, time, 
duration and characteristics of anomalies contained in the 
replayed documented traces. The number of false alarms and 
undetected attack is then trivial to compute. 

 
Scientific validation 
Verifiability Verifiability is enforced by the use of traces containing 

documented anomalies. This documentation represents the 
ground truth for this evaluation. 

Reliability Given the ground truth provided by the documented traces, the 
evaluation process is completely reliable.  

Repeatability and 
reproducibility 

As we are replaying traffic traces, we can repeat the 
experiments as many times as needed. 
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3 Routing and recovery 
 
3.1 Path availability 
3.1.1 IDIPS 
 
Experimental scenario description 
Title  IDIPS Use Case 
Technical objective The scenario builds further on the IDIPS use case. 

Machine learning is used to limit the number of measurements. 
The machine learning technique takes the history of 
measurements to predict the future performance of the paths. 
IDIPS is a framework to determine the best among several 
paths, for any definition of best. 

Participant UCL 
 
 
Content 
Short description  We implemented ISP-driven informed path selection (IDIPS) and 

the least mean squares (LMS) filtering for path performance 
prediction on the integrated XORP platform. Simulations have 
shown that the LMS filtering is adequate for delay 
prediction.  We plan to test it in real time with concurrent 
instances to see if LMS can be used in a real system with 
plenty of simultaneous computations. In other words, we want 
to be sure that the system is able to scale. 

Expected result(s) A first result we expect is the confirmation that LMS 
predictions are correct (i.e., the prediction error is 
limited). We also expect to see a reduction of the number of 
measurements to the different paths. Finally, we plan to see 
how scalable the implementation is. At a first glance it 
should be very scalable, but the dynamic of the path 
performance could stress the implementation and we have to 
see an upper bound for the system, regarding the load and the 
dynamic. 

 
Experimentation 
Evaluation criteria 
and metrics  
 

The following evaluation criteria will be used: 
- Scalability 
- Prediction accuracy 
- Stability 
- Measurement load/measurements gain 
 
Scalability is examined both in terms of the machine learning 
engine (LMS) and the IDIPS framework. 
The scalability of the machine learning engine consists of 
observing the amount of resources consumed by the LMS models 
for keeping the prediction models accurate. The resource 
consumption is measured both in terms of memory and time. One 
LMS model has to be kept for each path to predict performance 
for, the amount of memory could vary with the dynamic of the 
path, each model keeping track of the last observations. The 
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time consumption comes from the necessity to compute the 
model parameter for each prediction by analyzing the last 
observations. 
The scalability of the IDIPS framework, if we are not 
considering the machine learning part, is essentially driven 
by the time complexity. Indeed, for each request, IDIPS has 
to compute all possible paths, then query the machine 
learning part to get the last predictions for finally ranking 
and sorting the paths according to the rank that has been 
computed for them. The spatial complexity for a given metric 
is given by O(p + r*p_r) where p is the total number of paths 
maintained by the system, r, the number of request and p_r, 
the maximum number of paths per request. 
Prediction accuracy is related to LMS. The prediction 
accuracy represents the quality of the prediction, i.e., the 
error made by the prediction with respect to the use of the 
observed value. Prediction is used because the cost of 
observing (i.e., measuring) is too important. 
Stability is examined for path ranking. Along the time, the 
performance of the path changes and requires re-computation 
of the prediction model which may influence the final ranking 
result. The stability aims at determining how ranking changes 
along the time. A high stability means that ranking can be 
cached, reducing so the time complexity (at the cost of a 
space complexity) and thus increasing the request rate IDIPS 
can handle. On the contrary, instability means that ranking 
re-computation has to be performed all the time, reducing so 
the request rate IDIPS can handle. 
Measurement load/measurements gain is somewhat related to 
stability. If a path is stable with respect to a metric, the 
metric can be measured less often while keeping accuracy in 
the predictions. On the contrary, an unstable path will 
require more frequent observations to keep a good fitting 
between the prediction and the reality. The prediction part 
thus helps in reducing the number of measurements as it 
adapts the measurement rate to only measure the path when 
needed. Without a prediction system, the path has to be 
measured every time a ranking is requested for it. 
The two main concerns are the stability and the scalability, 
which are somewhat related. In our simulation so far, each 
path was considered independently of the others. In the 
experimentation, we will perform tests with several paths to 
rank in parallel. 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 

Deliverable 4.1                                                        Page 19 / 47 

Experimental scenario: 
description, tools, 
configuration and 
running conditions 

Machine Learning engine: 
The LMS filtering algorithm will be used for the 
experimentation. Earlier studies have shown that both LMS and 
ARMA-like techniques were working correctly for the delay, 
but it has been determined that ARMA-like technique were to 
costly to be able to use them in the IDIPS use case (it would 
not scale). 
System structure and platform: 
We will use IBBT iLab.t test bed running XORP 1.7 on top of 
Linux 64 bits. The testbed will be formed of two independent 
IDIPS instances with up to 50 clients. The experiment will 
only focus on the delay metric and the path availability (if 
a path is not available it will be presented as non reachable 
to the clients). The first step will consist of measuring 
paths. Their performance is controlled by the path 
performance controller facility from iLab.t. Once validated, 
we will do the experiment by measuring path through the real 
Internet via ADSL, cable, and fiber connectivity. The purpose 
of having two IDIPS instances is to see if the computed 
rankings are the same at each instance. The difference could 
be caused by interferences between the two IDIPS measurements 
parts. Some failures will be generated manually to determine 
how fast the system can detect them. 
Constraints: 
A major constraint for the experimentation is that the 
experimentation lab must be isolated of any other experiment 
to be sure that no interference exists between the different 
experiments. 

Methodology Methodology to obtain experimental data: 
The experimentation methodology involves: 

- Setting up an experimental topology (on the iLab.t test 
bed).  

- Deploying the XORP platform on iLab.t. 
- Configuring the IDIPS modules and the clients. 
- Applying any client request behavior. 
- Setting path performance alteration generator. 
- Extracting experimental data. 

 
Two main methodology tracks will be followed: 

- Scalability analysis; several parameters influence the 
scalability: the number of ranking requests to process 
in parallel influence the state IDIPS has to keep, the 
number of concurrent path that have to be ranked 
influence the amount of data to be stored in IDIPS but 
also the network load (the number of measurements to 
perform). 

- Accuracy analysis; IDIPS has to predict the delay for 
paths and real paths have performance changing all the 
time which may affect the prediction. Measuring and 
predicting on the wild will provide a good prediction 
accuracy analysis. 

 
Experimental data processing methodology and analysis: 
Log facilities are put in the IDIPS implementation to get all 
the parameters and predictions. 
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Scientific validation 
Verifiability In parallel to the measurements and predictions performed by 

IDIPS, the path delays can be monitored with other tools. The 
ranking can then be performed mathematically based on the 
observation from the monitoring tool. 
The scalability can be estimated theoretically once we know 
the dynamic of the path. We can then compare theoretical 
results with the observations performed on the testbed. 

Reliability The major reliability issue will come from the XORP scheduling 
which does not ensure that the actions requiring time 
information will be perfectly accurate. 
IDIPS must be able to terminate ranking instances and path 
measurements if they have not been used for a long time. 
Without this, the state would increase forever and consume all 
the memory. The evaluation will show the best timers to put on 
this. 

Repeatability and 
reproducibility 

For the fully generated delay, the repeatability and the 
reproducibility of the experiment are trivial as all the 
parameters of the testbed are controlled. For measurements 
involving Internet paths, it is not evident that the 
reproducibility will be easily achievable. However, we will 
take care of analyzing the external parameters to see if the 
experiment is representative or if they correspond to a 
transient phase. 
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3.1.2 Internet Coordinate System 
Experimental scenario description 
Title  Internet Coordinate System experimentation 
Technical objective Internet Coordinate Systems (ICS) are promising techniques to 

predict unknown network distances (typically delays) between 
any pair of nodes from a limited number of measurements. They 
are distributed algorithms, actually distributed Machine 
Learning Engines (MLEs), inferring together the missing 
elements in an almost empty distance matrix, where the few 
elements present in the matrix are the only distances actually 
measured.  

Participant(s) ULg 
 
Content 
Short description  We have already implemented the classical Vivaldi ICS within 

XORP as a reference. We are now implementing two other 
modules: 

- Our own ICS, designed in ECODE and denoted DMF (for 
Decentralized Matrix Factorization), which is not based 
on a Euclidian embedding and can therefore capture 
asymmetric distances and triangular inequality 
violations (TIV);  

- A Triangular Inequality Violation (TIV) detector, which 
allows finding routing shortcuts based on the ICS. 

They will be tested in a realistic setting, to see how well 
they perform and compare to the simulated results. 

Expected result(s) We expect a validation of our implementations with similar 
behaviors and results as the simulated ones. 
We also expect that DMF will outperform Vivaldi, especially on 
topologies with asymmetric distances and TIVs. 

 
Experimentation 
Evaluation criteria 
and metrics  

Experimental evaluation criteria: 
− Distance prediction accuracy of the ICS 
− Gain of discovered routing shortcuts 

 
Distance prediction accuracy is the main evaluation criterion 
for an ICS. We want to predict distances (delays) within the 
network, and the more accurate the predictions are, the 
better. 
Our reference distance matrix will be obtained by active 
measurement over all pairs of nodes on the testbed.  
The internal information issued by the ICS algorithm about 
estimated relative errors on the coordinates only gives a 
first insight, which we can compare with the real errors. 
 
In this context, we can use the same metrics as during 
simulation, with di, j  and ˆ d i, j  being respectively the distance 
from node i to j and its estimation: 
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-Cumulative Distribution of Relative Estimation Error 
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ˆ d i, j − di, j| |

di, j
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-Median Absolute Estimation Error: mediani, j di, j − ˆ d i, j| |( ). 
 
Gain of routing shortcut is related to the TIV detection and 
inference of some better paths than the direct ones currently 
used. For detected TIVs, it will give direct insight of how 
well it performs. It is computed as the ratio between the best 
shortcut we have detected, and the best path that actually 
exists. 

Experimental scenario: 
models, platform, 
configuration, 
traffic, constraints 

Machine learning engine: 
Two ICS algorithms will be used for experimentation. 
 
First, we will use the Vivaldi algorithm, which is already 
implemented within XORP and see how it performs, and compares 
to other real use cases of Vivaldi. Indeed, Vivaldi was 
proposed some years ago and benefits from several actual 
implementations, for example within Azureus – a bittorent 
client – or Pyxida running across PlanetLab. 
 
Second, once the implementation for the DMF algorithm is 
ported to XORP, we will use it to perform a similar 
experiment, with reference and feedback from the first 
experimentation. 
 
Eventually, we will use TIVs and shortcuts detection on both 
coordinate systems. 
 
System structure and platform: 
We will use the IBBT iLab.t test bed with 64-bit Linux 
machines running XORP 1.7(SVN) instances. We would use as many 
nodes as possible on this testbed. Each one would have the 
implementation of our ICS module, activated on multiple 
network interfaces. 
 
During performance of the experimentation, each ICS module 
would log its coordinates and data needed to perform its 
update, associated with a timestamp for later comparison and 
analysis. 
 
After validation on the IBBT iLab.t testbed, we could conduct 
similar experiments over PlanetLab. 

                            
1 Notice that it might be interesting to compare them with the errors 

estimated by the algorithms. 
2 Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness 

of fit to a nonmetric hypothesis. Psychometrika,29, 1-27. 
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Traffic: 
We will experiment the ICS under various traffic loads to 
evaluate the impact of the traffic on our performance metrics. 

Methodology Methodology to obtain experimental data: 
First, we will set up an experimental network topology, with 
XORP running on the hosts. We will activate ICS nodes 
successively, giving the address of the first one started as a 
bootstrap server. 
 
We will test various topologies, including some with 
asymmetric delays and TIVs, by engineering link delays and 
link weights on the testbed. 
 
We will let each node record within a local file the 
successive coordinates and error the node is computing for the 
experiment duration. 
 
Experimental data processing methodology and analysis: 
Experimental data collected will be processed to obtain a 
delay matrix which will be compared to the one measured over 
the experimental network topology. We will then compare both 
matrices wrt our performance metrics. 

 
Scientific validation 
Verifiability Since exhaustive data will be recorded by each Vivaldi module 

at each iteration, we will be able to verify the computation 
of coordinate updates for each node, at each step. 
Coordinates observed can be compared to the delays explicitly 
measured during experiment. 
Also, we can compare experimental results with results 
obtained by simulation with the delay matrix from the 
experiment. 

Reliability Experimental results might be biased if we halt our experiment 
soon after some failure within the network, considering that 
we are using final data to our analysis. In such case, the 
coordinate system would be in a state where some coordinates 
are not yet updated and, therefore, delay predictions are not 
accurate. To obtain reliable results, we must ensure that such 
a failure has not happened soon before the recording of our 
final data. 

Repeatability and 
reproducibility 

All the configuration parameters of the testbed (topology, 
delays, etc.) will be available. The boot order of the ICS 
nodes will be given too.  
While we can give our modus operandi to repeat our experiment, 
operations from individual nodes, such as picking peers at 
random for coordinates updates, are not reproducible. We can 
expect to reach similar results, but not identical from one 
experiment to another. 
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3.2 Network recovery and resiliency  
3.2.1 OSPF SRG inference 
 
Experimental scenario description 
Title  OSPF SRG inference 
Technical objective The scenario builds further on the use case concerning data 

mining of OSPF updates to identify SRLGs (TO2). 
Machine learning is used to infer Shared Risk Groups (SRG) 
from correlated historic OSPF protocol messages. These SRGs 
will be communicated to the OSPF protocol in order to reduce 
failure recovery times. 

Participants IBBT, ALB 
 
Content 
Short description  We plan to implement the algorithms developed for OSPF event 

modeling and clustering on the integrated XORP platform. 
Using this implementation on a range of topologies, we want 
to evaluate the modified OSPF process for failure recovery 
using inferred SRGs.  

Expected result(s) We expect that failures of links that are part of a SRG will 
be detected significantly faster using the machine learning 
engine, as OSPF does not have a mechanism to represent SRGs.  
Furthermore, we expect the routing system to be more 
scalable, since the SRG mechanism allows grouping, and thus 
reducing the number of OSPF routing recalculations and 
updates. 

 
Experimentation 
Evaluation criteria 
and metrics  

The following evaluation criteria will be used: 
- Failure detection time 
- Recovery time / convergence time 
- User traffic packet loss 
- Inference accuracy 
- Stability 
- Scalability 

Failure detection time is the time between occurrence of a 
SRG failure and the time said SRG is detected (reported) as 
down in a node running the machine learning engine with OSPF 
inference capability. 
Recovery time is the time between occurrence of the failure 
and re-establishment of end-to-end connectivity. User traffic 
affected by the failure is lost during recovery time. 
Alternatively, convergence time is the time between failure 
occurrence and the last routing update related to the 
failure; the network may or may not be recovered after 
convergence. 
Inference accuracy concerns how accurate the SRG inference 
(prediction) is. OSPF inference will predict links as 
failing; these predictions may or may not match protocol 
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messages (and link state) receive shortly after the failure. 
Stability is to be examined both in terms of the machine 
learning engine itself (SRG inference accuracy should not 
deteriorate over time), as well as the routing system 
(addition of SRG inference should not destabilize routing). 
Our main concern with scalability for this experimentation 
scenario is processing time, and how it relates to topology 
size. We expect an OSPF processing time scaling better with 
number of nodes, compared to the OSPF case without SRG 
inference functionality. Processing time of routing updates 
and shortest path tree calculation after failure can be 
expressed as simply the number of routing recalculations 
(since the actual processing time is hard to measure). 

Experimental scenario: 
description, tools, 
configuration and 
running conditions 

Machine Learning engine: 
Two algorithms developed earlier for OSPF event modeling and 
data-mining will be used in the scenario: 

- SRG state-space transition probabilities and LSA event 
clustering 

- SRG prediction from link failure correlation 
 
System structure and platform: 
We will use IBBT iLab.t test bed running XORP on top of 
Linux. For some experiment tracks some end-user applications 
(e.g. video streaming) will be used in order to visually 
demonstrate recovery times. 
The OSPF SRG inference functionality can be demonstrated 
running on just one node in the network (receiving protocol 
messages from regular OSPF nodes), or running on some/all 
nodes of the network. Also, multiple nodes can rely on a 
single machine learning engine instance (which in term can be 
populated based on information from multiple nodes). 
Functionality is required in order to emulate the failure of 
links and SRGs (multiple concurrent failures). 
 
Network topology: 
As the experiments require recovery after failure, (at least) 
bi-connected topologies are needed. Topologies of 4-5 nodes 
are an absolute minimum in order to demonstrate basic 
recovery for very small SRGs (e.g., 2 links). 
Scalability analysis requires larger topologies. These may be 
implemented by running the XORP platform on the desired 
number of nodes of a large topology (containing the maximum 
number of nodes needed for the scalability experiments). 
 
Experimental configuration and input description: 
Recovery using SRG inference can be demonstrated without 
actual user traffic. 
For experiments evaluating traffic loss, constant bit rate 
traffic generators can be used. 
For a possible (public) demonstration, we will use actual 
traffic from e.g. a video-stream. This allows both 
measurement (of traffic loss) as well as visual verification 
of recovery times. 
 
Constraints: 
The handling of SRGs is done by failing multiple links at the 
same time. No effort will be taken to emulate actual SRGs by, 
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for example, constructing OSPF links as connections that 
share a common point of failure in some layer 2 connection-
oriented network. 
OSPF interfaces can be configured in slightly different ways 
each yielding more or less the same results in terms of end-
to-end connectivity. However, the configuration method 
affects how LSAs are reported. Similarly, OSPF protocol 
messages do not report failures; earlier work on OSPF event 
modeling and data-mining assumed link failure messages. This 
will be coped with using the translation/representation 
functionality of the machine learning engine. 

Methodology Methodology to obtain experimental data: 
 
The experimentation methodology involves: 

- Setting up an experimental topology (on the iLab.t 
test bed). 

- Deploying the XORP platform and SRG inference machine 
learning instances. 

- Configuring the OSPF modules for the topology (tools 
will be used to do this automatically). 

- Applying any user traffic. 
- Generating failures according to (pre-determined) 

SRGs. 
- Extracting experimental data. 

run

topologies traffic

recovery time

functional analysis
demonstration

scalabilityperformance

SRG failures

resource usagepacket loss

scalability:
topology size

demo: user application
functional: probe packets
performance: high bitrate performance:

SRG number & size

  
Three main methodology tracks will be followed: 

- Proof-of-concept; i.e. functional analysis of SRG 
inference, OSPF protocol message collection and SRG 
prediction based OSPF rerouting. The planned public 
demonstration will make use of this track. 

- Performance analysis; by running batches of 
experiments for various configuration parameters, SRG 
sets and experimental topologies, we will extract end-
to-end performance metrics such as packet loss and 
recovery times. 

- Scalability analysis; for this track we concentrate on 
topology size mainly (choosing a limited set of 
configurations from the previous tracks), in order to 
examine network system wide stability and scalability 
(evaluation criteria as explained above) 
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Some state changes within the OSPF process are exposed 
through OSPF messages. Additional monitoring points will be 
used inside the OSPF module in order to log how OSPF state 
(LSA database and pruned links) is updated when MLE SRG 
inferences are pushed to the OSPF module. Monitoring points 
may also be added in order to achieve more accurate timing of 
OSPF recovery actions, as the corresponding OSPF messages may 
be delayed for routing protocol stability reasons. 
 
Experimental data processing methodology and analysis: 
 
Experimental data will be gathered by examining: 

- OSPF protocol messages and machine learning engine 
information exchange; 

- OSPF routing recalculation occurrences and outcome. 
The above can be compared with unmodified OSPF; running the 
same experimentation scenario on a vanilla OSPF area. 

- Monitoring end-to-end packet loss 
Link-based recovery time can be inferred from link local OSPF 
messages (i.e., hello protocol). Generated datasets contain 
the above information. 
 
All these data will heavily depend on OSPF parameters and 
topology size and structure. It is important to note that the 
size and number of SRGs will also influence results. Since 
multiple dimensions can be identified in SRG formation, this 
will require particular attention. 
 
Datasets that contain traces of OSPF messages, failure 
messages, end-to-end packet loss etc. should be tagged with: 

- used topology; 
- set of SRGs used; 
- OSPF parameters; 
- failure occurrence parameters (e.g., IAT/HT for 

exponentially distributed failures); 
- type of traffic used in determining packet loss; 

 
Scientific validation 
Verifiability Recovery times can be verified using OSPF message exchange 

analysis. 
Gains seen in processing time (i.e., number or routing 
recalculations) can be derived from size and number of SRG, 
and topology size. 

Reliability 1) Indicate key issues that may impact reliability. Which 
external factors may invalidate the experimental results? 
2) As the experimental scenario aims to improve resilience, 
the OSPF modifications and machine learning engine processes 
should remain stable on a time scale which supersedes MTBF of 
the network links (i.e., months/years). Nevertheless, given 
the distributed nature of OSPF, the modified OSPF and machine 
learning engine should be able to cope with a node in the 
OSPF area rebooting; this should not impact performance of 
SRG inference in nodes that remain up. 

Repeatability and Some of the timing results will depend heavily on OSPF timing 
parameters. As such, these results will be a statistical 
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reproducibility function of these timing parameters. Expected results should 
be stated within a range. 
Reproducibility relies on proper implementation of the 
interaction with the OSPF process; the default OSPF process 
(as present in XORP) has been modified to incorporate SRG 
inference predictions. 
Also, since SRGs are emulated by failing several links at a 
time, we should take care to construct realistic SRGs. When 
reproducing the experiment on an actual L3-over-L2 network 
scenario, with SRGs stemming from L2 routing and common 
points-of-failure, this poses certain limitations on the 
nature (number, size, span) of actual SRGs. 
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4 Accountability 
 

4.1 Profile-based accountability 
 
Experimental scenario description 
Title  Profile based accountability 
Technical objective The scenario is based on the Profile Based Accountability use 

case (b3), initially developed in WP3. 
The (machine-learning based) algorithmic options are the 
identification of action profiles and the computation of the 
subscriber profile in a profile learning and profile 
prediction stage, will be continued and extended.  

Participant(s) IBBT 
 
Content 
Short description  We plan to: 

1) Extend the existing clustering algorithm set with new 
clustering algorithms and implement a deviation 
function to detect a subscriber going out of profile. 

2) Apply the “out of profile” information obtained from 
the algorithms in the previous step and previous work 
of case b3 (as reported in Deliverable D3.5) to the 
routing and forwarding plane.  

Expected result(s) When we are able to accurately classify out of profile 
behavior from subscriber traffic, we can detect which 
subscriber traffic is not behaving in a responsible way. 
By adapting their scheduling and congestion control/AQM 
parameters, we expect that resources allocation would enable 
a better fairness between subscribers’ traffic flows 
(depending on the local resource usage rate). More 
specifically, we expect that the changes made to the router’s 
scheduling algorithm will allow only penalizing (a set of) 
traffic flows that are behaving "badly" (e.g. inappropriately 
responsive or unresponsive to congestion notifications). 

 
Experimentation 
Evaluation criteria 
and metrics  

The following evaluation criteria will be used: 
- Clustering accuracy 
- Fairness 
- Reaction time 
- Efficiency 

Clustering accuracy: as during this phase also new clustering 
and classification algorithms will be investigated, the 
accuracy of those newly developed algorithms will be 
evaluated. 
Fairness: In this use case, fairness means that subscriber’s 
traffic (as result of TCP stack parameterization) which is 
not behaving according to its profile receives the resources 
it requested and only the subscribers’ traffic which is out 
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of profile is penalized. A metric for this fairness will be 
defined and used as evaluation criteria.  
Reaction time: When a subscriber’s traffic goes out of 
profile, he should be penalized as quickly as possible in 
order to statistically maintain a fair allocation of 
resources for the other subscribers’ traffic. While 
occasional spikes of “behaving badly” may be allowed, we 
define the term going “out of profile” as behaving in such a 
way that a reaction is required. This reaction time will be 
evaluated and consists of a detection delay and reaction 
delay. 
Efficiency: The goal of the profile based accountability case 
is to penalize out-of-profile subscribers’ traffic in favor 
of in-profile subscribers’ traffic. The expectation is that 
this in-profile subscribers’ traffic should be better 
serviced than out-of-profile traffic without unduly reduced 
resource sharing efficiency and link resource utility.  

Experimental scenario: 
models, platform, 
configuration, 
traffic, constraints 

Machine learning engine: 
Algorithms that were used during WP3 such as the C4.5 
Decision Tree Classification algorithm will be used as well 
but we also plan to investigate new ones, both for the 
classification problem as for the deviation calculation. This 
allows effectively characterizing the performance of the 
earlier investigated algorithms through comparison.  
 
System structure and platform: 
We will use the IBBT iLab.t Virtual Wall test bed facility 
running XORP or the Click Modular Router on top of Linux. The 
experiments will be coupled with the traffic generation tool 
that was designed and reported on in deliverable D3.5. This 
traffic generation tool also foresees in the use of multiple 
software programs: 

- Apache web server  
- Sirannon video server, designed by the IBBT 
- VLC media player 
- etc. 

The profile based accountability algorithms can run on one 
machine. However, multiple physical machines are needed to 
emulate the behavior of different TCP stacks accurately. 
Furthermore, the algorithms can also be deployed an multiple 
nodes, in which each algorithm will work independently of the 
others. Running this scenario on multiple nodes is also part 
of this scenario.  
 
Network topology: 
As this scenario does not heavily rely on the routing 
functionality but focuses more on the scheduling 
functionality, there are no real requirements on the employed 
topology.  
However, for simplicity reasons, we investigate a butterfly-
based topology where a set of servers are connected to a set 
of clients over one link. In order to have realistic data a 
large amount of nodes (20+) are needed to emulate this 
behavior. Initially, the number of servers will be fixed to 
1, and the focus will be on the emulation of the clients. As 
such, a defective TCP stack will be emulated on the client 
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side. 
 
Experimental configuration and input description: 
The evaluation and demonstration of the profile based 
accountability functionality requires the emulation of 
realistic subscriber traffic stacks. This emulation is 
handled by employing multiple TCP implementations that are 
provided by default in Linux. Typical examples include: 

- TCP Westwood/Westwood/+  
- TCP Tahoe/Reno/New Reno 
- TCP BIC/CUBIC 
- Etc. 

Each of these TCP stacks can feature in-profile or out-of-
profile by enabling the ECN support. If the use of ECN bits 
is ignored, then, although ECN is applied at the 
communicating side and intermediate routers, the stack can be 
regarded as defective (or unresponsive). 
In the proposed scenario, a set of TCP stacks (on the client 
side) will communicate with one specific TCP stack on the 
server side. The various TCP stacks on the client side can be 
turned defective, either at the start or the experiment or 
during the experiment. 
On the shared link between clients and servers, the PBA 
algorithm will be deployed. The goal of this algorithm is to 
detect the defective behavior of the TCP stacks while it 
lasts, and react accordingly. 

Methodology Methodology to obtain experimental data: 
The methodology can be highly automated thanks to central 
configuration of the traffic generation tool. This involves: 

- Defining the network topology and link configurations 
- Defining the scenarios to be investigated. The core 

scenarios described above (Experimental configuration 
and input description) are used and implemented with a 
varying number of subscribers. 

- Introducing traffic through the emulation of 
subscriber behavior. This includes subscribers going 
“out of profile” deliberately. 

- Extracting experimental data 
 
Experimental data processing methodology and analysis: 
This experimental data will be used to train the machine 
learning algorithms at which an adapted version of the 
process will be executed. The process that will be followed 
is: 

- Defining the network topology and link configurations 
- Defining the scenarios to be investigated. The core 

scenarios described above (Experimental configuration 
and input description) are used and implemented with a 
varying number of subscribers. These scenarios may or 
may not differ from the originally employed scenarios. 

- Introducing traffic through the emulation of 
subscriber behavior. This includes subscribers going 
“out of profile” deliberately. 

- Configuration of the machine learning algorithms and 
configuration of the routing and forwarding planes of 
the different routers. The profile based 
accountability functionality will be able to steer the 
scheduling functionality in the forwarding plane. 
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- Extracting the evaluation metrics as described in 
“Evaluation Criteria and Metrics”. This will be 
largely automated through the use of the traffic 
generation tool, which is also responsible for 
steering the experimental setup.  

 
Scientific validation 
Verifiability Visualization of the experiment will be foreseen in order to 

verify that the semantics of the experiment correspond with 
the configuration of the experiment.  
The behavior of subscribers can be verified by checking the 
models used to implement this behavior. If necessary, real-
time behavior can be used as input to obtain more realistic 
models.  

Reliability The profile based accountability functionality relies heavily 
on assumption made of how individual subscribers behave in 
practice. The use of realistic traffic patterns is therefore 
essential to obtain realistic results by means of the traffic 
generation tool(s). 

Repeatability and 
reproducibility 

As the traffic generation tool takes care of the 
centralization of configuration in both the learning and 
deployment step, the performed results are fairly easy to 
repeat and reproduce as long as the traffic generation tool 
is made available to the third party.  
The traffic generation tool has been designed in such a way 
that it operates in a closed loop system as much as possible. 
Therefore, the traffic generation tool configures everything 
starting from the operation system up to the behavior of 
individual subscribers’ traffic and their corresponding TCP 
stacks. 
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5 Routing system 
 
5.1 Routing system scalability 
 
Our experiments are based on a “replay” of BGP monitoring traces.  This 
replay is possible by injecting BGP dumped messages into our implementation 
of Path Exploration within XORP.   
 
We do not collect ourselves BGP messages.  Instead, as explained below, we 
download BGP messages from the Routeview Project and RIPE BGP traces.  As a 
consequence, for a base experimental setting, a single machine running our 
implementation into XORP is enough for performing the tests.  The iLab.t 
platform is thus not strictly necessary for re-playing the BGP traces 
collected off-line.  This explains why we consider use of stand-alone 
machine(s). 
 
Experimentation 
Platform and input 
data 

System structure and platform: 
For experiments using the Routeview project date, a single 
box, with the following configuration: 

- Operating System: Linux 64 bits, with kernel 2.6.28  
- CPU: Intel Xeon E5430, quad-core  
- 6 MB of L2 cache shared by pairs of cores 
- 32 kB of L1 cache on each core 
- 4.8 GB of main memory 

 
For experiments using the RIPE BGP data, two servers with the 
following configuration: 

- OS: CentOS, with Linux Kernel 2.6 
- CPU: Intel Quad-Core Xeon E5405, 2.6 GHz (12MB Cache) 
- Memory: 32 GB DDR2-667 registered ECC (16 DIMMs) 
- Disk: 4 Seagate 300 GB SAS drive, 15,000 rpm 
- NIC: Intel® PRO/1000 PT Ethernet Server Adapter, 2x 

RJ45, PCI-e 
 
Experimental configuration and input description: 

BGP updates are taken from the Routeview Project. We consider 
one month of BGP Update (November 2009). These updates were 
recorded from a total of 42 peers at the Oregon Routeview 
monitor. The total number of Update message is about 89 
millions BGP updates are taken from the RIPE Routing 
Information Service (RIS). RIS is a RIPE NCC project that 
collects and stores routing data from the Internet, on 
several locations around the globe. RIS offers nice tools 
bringing up this data to the Internet community. Raw data are 
collected by the RRCs using Quagga routing software, stored 
in MRT format. This format is described in the IETF document 
entitled MRT routing information export format draft-ietf-
grow-mrt-11.txt). These files can be read using libbgpdump, a 
library written in C, currently maintained by the RIPE NCC.   
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The Scientific validation is the same for all experimental scenarios. 
 
Scientific validation 
Verifiability Decisions taken by the Learning algorithm can be verified 

based on the MRT files from input. As we are “replaying” BGP 
message traces, the decision taken can be easily verified. 

Reliability In usual programs based on MRT feeds, BGP messages are all 
injected at once. This creates an issue when one wants to 
evaluate the efficiency of the learning based on measurements 
that depends on time, such as the message arrival frequency.  
Fortunately, MRT files contain a timestamp for each message.  
We add a virtual clock inside the memory processing state.  
This clock is modified dynamically on the fly according to 
the timestamps contained in the MRT file. All measurements 
are then based on that virtual clock. 

Repeatability We use binary MRT files downloaded directly from the 
Routeview website and RIPE NCC website 
(http://www.ris.ripe.net/risreport/).   
 
Our program can read them in bzip2 format or already 
uncompressed.  One can specify a single directory where all 
the MRT files are stored (in this case, they will be 
processed in an alphabetical order) or a single MRT file. All 
BGP messages recorded in the MRT will be parsed, then 
withdrawal instructions will be injected in the pipeline 
(remind that the XORP BGP update processing is implemented as 
a pipeline of XORP processing stages), followed by 
announcement instructions along with the attributes contained 
in the message. 
 
Raw data are collected by the RRCs using Quagga routing 
software, stored in MRT format. This format is described in 
the IETF document entitled MRT routing information export 
format draft-ietf-grow-mrt-11.txt). These files can be read 
using libbgpdump, a library written in C, currently 
maintained by the RIPE NCC. BGP UPDATE messages are parsed 
and stored in the Adj-RIB-In, processed by the machine 
learning algorithm. During the learning phase, the BGP UPDATE 
messages are grouped per time window (Max_AS-Path – Min_AS-
Path) x MRAI per destination prefix, with MRAI being the 
minimum route advertisement interval. The result of the 
processing of the Adj-RIB-In entries replaces the default BGP 
route selection process for that prefix.  

Reproducibility Our experiments are easily reproducible as we consider well 
known and freely available BGP data (Routeview Project and 
RIPE RIS Raw BGP Data). As long as the same dataset is used 
in input, the results are reproducible. 
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5.1.1 Run-time memory cost 
 
Experimental scenario description 
Title  Run-time memory cost 
Technical objective The objective of this scenario is to evaluate the scalability 

of implementing a learning algorithm to help the BGP Path 
Exploration process. 

Participants UCL, ALB 
 
Content 
Short description  Evaluation of the scalability of our implementation in terms 

of memory usage.  Confront our implementation to real BGP 
UPDATE messages. 

Expected result(s) We want to determine if the memory cost explodes or if it 
stays to a reasonable level. Ideally, the memory usage should 
reach a stable stage at some point, meaning that the memory 
usage does not grow infinitely.  

Evaluation Criteria 
and Metrics 

The following metrics are considered: 
- The number of distinct attributes (in terms of ML) 
- The number of distinct network prefixes 

managed/processed 
- The memory usage (in MB) 

 
We consider cases when the Memory processing stage is enabled 
or not.  When enabled, we vary the history size.  Considered 
values are: 2 attributes, 4 attributes, 5 attributes, and 10 
attributes. 
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5.1.2 Filtering of BGP messages 
 
Experimental scenario description 
Title  Filtering of BGP messages 
Technical objective Evaluation on how a better scalability can be reached by 

filtering some BGP messages. 
Participant UCL 
 

Content 
Short description  We want to evaluate the impact of filtering some BGP messages 

and determine whether such a filtering leads to a better 
scalability. 
 
There are mainly two reasons for filtering: 

- Software routers (Quagga/Zebra) are often used to 
collect BGP updates from remote peers with multi-hop 
BGP sessions.  They frequently suffer session resets 
during which the entire BGP table has to be re-
transferred. 

- We are only interested in Path Exploration generated by 
AS_PATH modification.  Therefore, any Path Exploration 
triggered by modifications in some BGP attributes (such 
as med or community) should be considered as noise. 

 
In our filtering process, all the updates whose AS_PATH 
attributes make no changes to BGP router table will be 
filtered out. 

Expected result(s) We expect a drop in the amount of BGP Update messages that 
must be processed by our Path Exploration module. Acting so, 
we believe we could achieve a better scalability by reducing 
the amount of required memory 

Evaluation Criteria 
and Metrics 

We consider the same metrics and criteria than those 
previously exposed. In addition, we want to determine the 
proportion of Updates messages filtered out. 

 
5.1.3 BGP transient overhead reduction 
 
Experimental scenario description 
Title  BGP transient overhead reduction 
Technical objective Evaluation on how a better scalability can be reached by 

removing BGP path exploration sequences 
Participant ALB 
 
Content 
Short description  With the proposed mitigation method, the BGP decision of the 

route selection process is anticipated upon path exploration 
event detection and identification (characterization). This 
involves actions to suppress the churn on downstream nodes, 
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such as selecting the alternate best AS_Path to be advertised 
to the BGP peers. Henceforth, this experiment measures, the 
actual number of BGP UPDATE message per prefix as received by 
a downstream BGP speaker.  

Expected result(s) If the HMM-based machine learning algorithm performs as 
expected, a downstream BGP speaker should not receive any BGP 
UPDATE other than the next stable routing state. 

Evaluation Criteria 
and Metrics 

The following metrics are used on the ML equipped server: 
1. The number of actual path exploration events detected 

(true positives). Note that we might encounter false 
positives (i.e., a sequence of events is labeled as path 
exploration while it is not the case) and false 
negatives (i.e., a sequence of events is ignored while 
it should have been labeled as path exploration). 

2. The time required for the detection of path exploration 
event. 

3. The correctness of the selected path and the proportion 
of correctness of selected AS_Paths: for the number of 
path exploration events detected the number of events 
for which the next stable sequence is returned in the 
Loc-RIB and the Adj-RIB-Out. 

4. The probability of selecting a wrong AS_Path and the 
impact of selecting a wrong AS_Path. The impact of 
selecting the wrong AS_Path is the deviation of the 
wrongly selected AS path from the AS_Path that would be 
selected after convergence (i.e. after full path 
exploration phase). From this deviation an estimate can 
be achieved on the number of AS's that will be affected 
by that decision. 

 
The following metrics are used on the downstream BGP node: 

1. The number of actual path exploration events -not- 
detected. 

2. The time required for selecting the AS_Path as received 
from the incoming BGP UPDATE message. 

3. The correctness of the received AS_Path and the 
proportion of correctness of received AS_Paths (as 
selected by the upstream router). 
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5.2 Routing system quality 
5.2.1 Learning results 
 
Experimental scenario description 
Title  Learning results 
Technical objective Demonstrate the feasibility of implementing machine learning 

techniques within a real BGP router by using measurement's 
history provided by the Memory processing stage. 

Participants UCL, ALB 
 
 
Content 
Short description  Evaluation of the performance of the C4.5 algorithm when 

confronted to real data. 
Evaluation of the performance of the HMM algorithm detailed 
in D3.6. Note that additional improvements have been proposed 
that account for non-exploratory withdrawal states. 

Expected result(s) The proportion of correct decisions should be high enough. 
A classifier is a function that maps observed AS-paths to BGP 
state event classes. The goal of the learning process is thus 
to find a function, i.e. a classifier, that correctly 
predicts the class of topologically correlated AS-path(s) 
with the minimum expected cost.  
The cost function assesses the penalties associated to the 
selection of BGP routes that contain (part of) the path 
exploration sequence:  

- missed path exploration events 
- false positive detections: the classification declares 

a path exploration event when in reality there is none; 
such an error may typically occur when decision is 
taken too rapidly 

- and false negative detections: the classification does 
not declare an event to be a path exploration event 
when in reality it is; such an error typically occurs 
when the decision is taken too slowly. 

Evaluation Criteria 
and Metrics 

We evaluate the performance of the C4.5 algorithm as follows: 
- First, we look at the Beacon messages coming from two 

different ASes (AS3549 and AS852). The machine learning 
algorithm, in such as case, is applied on a per peer 
basis. 

- Second, we consider the history coming from several 
peers at the same time.  This dataset is obtained by 
merging the sequences of all BGP updates coming from 
all the 42 peers available at the Oregon Routeview 
monitor. 

 
Metrics considered are the learning set error ratio and the 
test set error ratio. 
 
The following metrics are measured on the ML equipped server: 

1. The number of path exploration events detected (true 
positives), the rate of false positives (i.e., a 
sequence of events is labeled as path exploration while 
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it is not the case) and false negatives (i.e., a 
sequence of events is ignored while it should have been 
labeled as path exploration). 

2. The time required for the detection of path exploration 
event.  

3. The correctness of the selected path: for the number of 
path exploration events detected the number of events 
for which the next stable sequence is returned in the 
Loc-RIB and the Adj-RIB-Out. 

 
Experimentation 
Platform and input 
data 

System structure and platform: 
Same hardware setup as for scalability experiments. 
 
Experimental configuration and input description: 

Two sources of input are considered:  
1. We consider BGP messages from the Routeview project. 

Two months of data are used: November and October 2009.  
The data used to train the C4.5 machine learning 
algorithm is based on Beacons. A BGP Beacon is an 
unused prefix which has a well-defined schedule for 
announcement and withdrawal. The pattern used by the 
Beacons is very simple: a network prefix is announced 
at time t to be finally withdrawn at time t+2h. The 
beacon we consider are those announced by the RIPE NCC 
consortium. 

2. We also consider the BGP messages from the BGP RIS Raw 
Data of the RIPE NIS project. Four separate months of 
data are used: April’09, July’09; October’09, 
January’10 and April 2010 as training set. These data 
are collected at Amsterdam (AMS-IX), Otemachi, Japan 
(DIX-IE) and Stockholm, Sweden (NETNOD) 
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6 Summary 
6.1 Scheduled experimentation 
 
The following table lists the experimental scenario described in previous 
sections, sorted by Technical Objective and use case. Partner(s) 
responsible for the scenario and related section in this deliverable is 
given as a quick reference. 
 

Table 3. List of experimental scenarios by TO and use case 
TO Case Experimental Scenario Section Partner(s) 

a1 Running monitoring applications based 
on adaptive sampling 

2.1.1 INRIA, IBBT 

a2 Validation of the performance and 
accuracy of the monitoring system 

2.2.1 LAAS/CNRS 

TO1 

a3 Evaluation of the Anomaly Detection 
System (ADS) 

2.3.1 LAAS/CNRS 
(ULANC) 

IDIPS 3.1.1 UCL b1 
Internet Coordinate System 3.1.2 ULg 

b2 OSPF SRG inference 3.2.1 IBBT, ALB 

TO2 

b3 Profile-based accountability 4.1 IBBT, ALB 
Run-time memory cost 5.1.1 UCL, ALB 
Filtering of BGP messages 5.1.2 UCL 
BGP transient overhead reduction 5.1.3 ALB 

TO3 c 

Learning results 5.2.1 UCL, ALB 
 
6.2 Functional and Performance validation criteria and metrics 
 
In addition to proof-of-concept experimentation, each of the experimental 
scenarios is used to perform functional and performance validation thanks 
to the definition of validation criteria and metrics, as summarized below. 
6.2.1 Accuracy 
 
Accuracy appears as both monitoring accuracy (monitoring data matches 
actual traffic and events, or matches third-party monitoring traces) as 
well as detection/prediction accuracy (detection rates, number of false 
positives, etc.). In the context of this deliverable, accuracy should not 
be confused with correctness (next section). 
 

i) Monitoring accuracy 
 
Running monitoring applications based on adaptive sampling (INRIA, IBBT): 
Network status estimation accuracy measures how well the adaptive sampling 
results into an accurate estimation of actual network status. 
 
Validation of the performance and accuracy of the monitoring system 
(LAAS/CNRS):   
Data from the monitoring system is compared against actual traffic. A DAG 
system is used as base-line monitoring tool. 
 

ii)  Detection accuracy 
 
Evaluation of the Anomaly Detection System (ADS) (LAAS/CNRS; ULANC): 
Detection accuracy of anomalies is examined through detection rates, false 
positive/negative rates, and rate of undetected attacks. Detection of the 
ADS will be compared with traffic traces. 
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Profile-based accountability (IBBT): 
The clustering accuracy of new clustering and classification algorithms is 
examined. 
 
BGP transient overhead reduction (ALB) - Learning results (UCL, ALB): 
Detection accuracy for path exploration events, as well as false positives 
and false negatives is considered. Actual occurrence of path exploration 
events is extracted from the fixed BGP input data. 
 

iii) Prediction accuracy 
 
IDIPS (UCL): 
Impact of limiting the number of measurements on accuracy of delay 
predictions is analyzed. Predicted delays are compared with path delay 
measurement samples. 
 
Internet Coordinate System (ULg): 
Prediction accuracy of network distances (delays) are compared with delay 
measurements on the testbed topologies. 
 
OSPF SRG inference (IBBT): 
Prediction accuracy of shared risk groups is defined as rate of correct 
predictions, false positives and false negatives. The predictions can be 
analyzed by applying non-concurrent SRG failures to the scenario. 
6.2.2 Correctness 
 
The usage of a machine learning engine and executing machine learning 
algorithms impacts the correctness of the outcome and actions of networking 
techniques. The machine learning engine can be used to provide faster, more 
scalable solutions, in which case the outcome may suffer in correctness. 
Alternatively, the objective of using the machine learning engine and ML 
algorithms may lie in reaching functionality that performs better than 
traditional techniques; in this case correctness is a performance metric. 
 

i) Correctness as requirement 
 
BGP transient overhead reduction (ALB) – Learning results (UCL, ALB): 
The correctness of selected path and AS_paths may be impacted by the 
removal of BGP path exploration sequences. 
 

ii)  Correctness as performance gain 
 
Evaluation of the Anomaly Detection System (ADS) (LAAS/CNRS; ULANC): 
Correctness is defined through the ability of the ADS to detect unknown (0-
day) anomalies. 
 
Internet Coordinate System (ULg): 
Higher correctness (shorter paths) is reached by finding routing shortcuts 
which can be found from the ICS using a triangular inequality violation 
detector. 
 
6.2.3 Timing 
 
Timing of actions initiated by the machine learning engine generally has a 
direct impact on network user experience. Reaction times, recovery times 
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and detection times are the main performance metrics considered. Timing may 
be related to stability. 
 
Running monitoring applications based on adaptive sampling (INRIA, IBBT): 
Reaction time needed to readjust configuration of the monitors. 
 
OSPF SRG inference (IBBT): 
Firstly, SRG failure detection time is considered; this time is determined 
by the number of link failure events (in the same SRG) needed to predict 
the SRG as failed. Secondly, total failure recovery (i.e., re-establishment 
of connectivity) time is considered. 
 
Profile-based accountability (IBBT): 
Reaction time taken to changes in user traffic which exceed the profile. 
 
BGP transient overhead reduction (ALB) – Learning results (UCL, ALB): 
Detection time of path exploration events. 
6.2.4 Stability 
 
Stability can be expressed against a number of performance metrics.  
 
IDIPS (UCL): 
Stability in terms of measurement load and gain. 
 
OSPF SRG inference (IBBT): 
Stability in terms of prediction accuracy over time (i.e., total number of 
recorded failures). 
 
6.2.5 Scalability 
 
Scalability can be expressed against a number of performance metrics. Also 
scalability is expressed against one or more scenario parameters (e.g., 
topology, input traffic). 
 
Running monitoring applications based on adaptive sampling (INRIA, IBBT): 
Scalability in terms of traffic collection overhead, against topology size 
and number of interfaces. 
 
IDIPS (UCL): 
Scalability against number of requests, number of concurrent paths. 
 
OSPF SRG inference (IBBT): 
Scalability in terms of number of OSPF messages, memory usage and 
processing time, against topology size. 
 
Run-time memory cost (UCL, ALB): 
Scalability in terms of memory usage, number of prefixes and attributes. 
 
Filtering of BGP messages (UCL): 
As above, additionally impact of filtering on scalability is examined. 
 
6.2.6 Quality of Service 
 
QoS is a performance metric which is directly noticeable by the network 
users. 
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OSPF SRG inference (IBBT): 
End-to-end packet loss during failures is determined. 
 
Profile-based accountability (IBBT): 
Impact of traffic exceeding the profile on QoS of traffic of other users is 
examined. Related to this, fairness is considered as well. 
 

Table 4. Matrix summary of validation criteria and metrics 
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a1 Running monitoring applications based on adaptive sampling          
a2 Validation of the performance and accuracy of the monitoring system          
a3 Evaluation of the Anomaly Detection System (ADS)          

IDIPS          b1 Internet Coordinate System          
b2 OSPF SRG inference          
b3 Profile-based accountability          

Run-time memory cost          
Filtering of BGP messages          
BGP transient overhead reduction          c 
Learning results          

 
6.3 Experimental scenario relationships and dependence 
 
The diagram in Fig. 1 shows dependence and relationships between the 
experimental scenarios within the ECODE project. 
 
The diagram in Fig. 2 outlines dependencies of the experimental scenarios 
on software, tools, input topologies, traffic traces and testbed setups 
external to the ECODE project. 
 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 

Deliverable 4.1                                                        Page 44 / 47 

adaptive sampling

monitoring system

ADS

IDIPS

ICS
OSPF SRG inf.

PBA

BGP: Memory cost

BGP: filtering

BGP: transient

BGP: learning

Dedicated 
platform (BGP)

Dedicated 
platform (mon.) iLab.t

ECODE traffic 
generation tool

similar scenarios

u
s
e
s

uses

uses

similar scenarios

u
s
e
s

 Fig. 1. Experimental scenario interdependency 
 

adaptive sampling

monitoring system

ADS

IDIPS

ICS OSPF SRG inf.

PBA

BGP: Memory cost

BGP: filtering

BGP: transient

BGP: learning

BGP Routeview
BGP traces

testbeds

BGP RIPE NIS
BGP traces

End-user 
applications

PlanetLab

LaasNetExp

XORP 1.7 
(SVN)

tcpreplay

nonglrd_gen

MetroSec
traces

Abilene 
topology
GEANT

topology

DAG system
D-ITG

Pcap

input

tools and software

 Fig. 2. External dependencies 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 

Deliverable 4.1                                                        Page 45 / 47 

Annex.1: Template 
Experimental scenario description 
Title  A meaningful title for the experimentation 
Technical objective Indicate which technical objectives (use cases) will be used 

for the experimental scenario. 
Task Indicate which WP4 task the experimental scenario will 

contribute to. 
Participant(s) Indicate who will be performing this scenario and whether 

they would prefer or need to interact with other partners for 
accomplishing this scenario. 

 
Content 
Short description  What do you plan to experiment in more detail than the title 

and less detail than the remainder (experimental scenario) 
Expected result(s) 1) What do you expect to find as results? 

2) Why would this be the case? 
 
Experimentation (possibly refer to D3.1) 
Evaluation criteria 
and metrics  

Describe the experimental evaluation criteria, and metrics. 
 

Experimental scenario: 
models, platform, 
configuration, 
traffic, constraints 

Machine learning engine: 
List the algorithms and models to be used in the machine 
learning engine implementation for the scenario. Refer to 
earlier work done for use cases/technical objectives; explain 
machine learning approaches that will be introduced in this 
experimentation track 
 
System structure and platform: 
1) Describe the experimentation platform (test bed) used for 
the scenario. Include any hardware and/or applications that 
interact directly with the machine learning engine during the 
experimentation.  
2) Does the implementation interact with implementations from 
other use cases (by other ECODE participants)?  
3) Is the machine learning engine process distributed over 
multiple machines?  
4) Does the experimental scenario require any machine to be 
terminals? 
5) Is there any functionality missing from the test bed 
platform that must be implemented for the experimental 
scenario? 
 
Network topology: 
1) What types of network topologies are required for the 
experiment?  
2) What type of connectivity is needed between machines?  
3) How many machines are needed? 
 
Experimental configuration and input description: 
1) For the experiment list: 
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- background traffic 
- events (including failures) 

to be emulated. 
2) What are their characteristics?  
3) Is the traffic available as a model, as a traffic trace, 
or will a user application be used instead (‘real traffic’)? 
 
Constraints: 
1) Does the choice of the above (platform, topology, traffic, 
etc.) pose any constraints?  
2) Does the test bed platform require some abstractions or 
short-cuts to be taken in the emulation?  
3) Are there any special configuration issues to take into 
account?  
4) Is there a confidentiality requirement for some of the 
experimentation data?  
5) Does the XORP platform itself pose any limits concerning 
accurate timing, throughput, etc.?  
6) Are there any protocol particularities that collide with 
abstractions made during earlier work?  

Methodology Methodology to obtain experimental data: 
 
1) Flowchart of the experimental scenario with the functional 
blocks indicated. 
2) Provide an indicative description of the experimentation 
running time (per step if possible). 
3) If the experimentation scenario will be used for multiple 
experimentation tracks (e.g. functional analysis, performance 
evaluation, etc.), does each track require a different 
methodology?  
5) Does obtaining the evaluation metrics and performance 
metrics require external measurement and tools? On the other 
hand, if these are obtaining from the XORP platform, do the 
measurements require any extensions to the platform? 
 
Experimental data processing methodology and analysis: 
 
1) Describe here the methodology for processing and comparing 
the experimental data (e.g. against reference scenario).  
2) If experimental data is collected as a dataset for further 
processing, describe what type of data is collected (dataset 
format), and mention how datasets should be identified for 
processing and analysis (tagging/metadata: input parameters, 
topology, experiment run time, person doing the experiment, 
etc.) 
3) Provide detailed description of the analysis to be 
performed on the obtained data (including sensitivity 
analysis). - Note in case data analysis requires use of a 
specific tool, please indicate which tool. 

 
Scientific validation 
Verifiability 1) Which formal models will be used in order to verify 

outcomes of the experiment?  
2) How do the experiment scenario and evaluation criteria map 
to clear definitions that can be used in a formal model. 
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Reliability 1) Indicate key issues that may impact reliability. Which 
external factors may invalidate the experimental results? 
2) What kind of reliability (time scale) is aimed for in the 
experimental scenario?  

Repeatability State which steps are taken to ensure that the experimental 
scenario can be repeated by the scenario participants. 

Reproducibility State which steps are taken to ensure that the experimental 
scenario can be reproduced by third parties. 
Which blocking issues may prevent other ECODE partners or 
external parties from reproducing the experimental scenario? 

 


