
Seventh FRAMEWORK PROGRAMME
FP7-ICT-2007-2 - ICT-2007-1.6

New Paradigms and Experimental Facilities

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT

Deliverable D4.1
“Experimental scenarios including

evaluation criteria and methodology”

Project description
Project acronym: ECODE
Project full title: Experimental Cognitive Distributed Engine
Grant Agreement no.: 223936
Document Properties
Number: FP7-ICT-2007-2-1.6-223936-D4.1
Title: Experimental scenarios including evaluation criteria and
methodology
Responsible: Bart Puype (IBBT)
Editor(s): Bart Puype (IBBT)
Contributor(s): Chadi Bakarat (INRIA), Pedro Casas (CNRS), Benoit
Donnet (UCL), Mickaël Hoerdt (UCL), Amir Krifa (INRIA), Yann Labit
(CNRS), Steven Latré (IBBT), Guy Leduc (ULg), Johan Mazel (CNRS),
Stijn Melis (IBBT), Philippe Owezarski (CNRS), Dimitri Papadimitriou
(ALB), Bart Puype (IBBT), Damien Saucez (UCL), Wim Van de Meerssche
(IBBT), Bruno Willemaers (ULg)
Dissemination level: Public (Pu)
Date of preparation: June 2nd, 2010 (v1.0), December 13th, 2010 (v1.1)

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 2 / 47

D4.1 – Experimental scenarios including evaluation criteria
and methodology

Executive Summary
This document is the final version of ECODE deliverable D4.1, which
describes experimental scenarios including evaluation criteria and
methodology. The experimental scenarios proposed here continue from the use
cases as defined in D3.1. Building on initial assessment and proof-of-
concept experimentation performed within WP3, WP4 takes into account real-
world evaluation criteria such as stability and scalability. Attention to
scientific validity ensures the relevance of experimental outcomes.

WP4 comprises the second of two experimental phases spanning from M18
(Feb.2010) to M31 (Mar.2011) as outlined by Technical Annex I, part B. The
first experimental phase (WP3) examined the applicability, validity and
feasibility of a machine learning engine for several use cases. During the
second phase however, experimentation is taken beyond the initial
assessment and validation of machine learning combined with advanced
networking techniques which were performed in WP3. For this, the
experimentation converges around the common Machine Learning Engine (MLE)
platform detailed in D2.2 “Cognitive Engine – Experimental low-level
design”.

First phase experimentation consisted of a number of use cases distributed
over three parallel technical objectives. Its results were included in
D3.3, D3.5 and D3.7 (related to TO1, TO2 and TO3 respectively). Whereas WP3
tasks were defined through these technical objectives, WP4 tasks are
defined by experimentation goals. Nevertheless, WP4 builds further upon
these use cases.

This deliverable D4.1, as the first WP4 deliverable, describes the
experimental scenarios for the second experimental phase. This identifies
the scenarios considered within WP4 (some based on WP3 scenarios, some
new). Also, it will allow answering questions regarding (1) Technical
Objectives, (2) Content, (3) Description and (4) Scientific Validity of
each of the experimental scenarios. The template used to obtain this
information is available in Annex 1. Each experiment description is
structured around the following elements:

- Detailed use case description, performance objectives, (technical
and non-technical) constraints, and description of the expected
results;

- Description of the experimental evaluation criteria and metrics;
- Description of the experimental scenario description, setup, tools,

platform and methodology;
- Scientific validity in terms of verifiability, reliability as well

as repeatability and reproducibility.

The second experimental phase too will be conducted in physical
experimental infrastructures. For most experimental scenarios, this is the
iLab.t physical experimental facility, located at IBBT premises in Ghent,
Belgium.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 3 / 47

List of authors
Affiliation Author
ALB Dimitri Papadimitriou
CNRS Pedro Casas
CNRS Yann Labit
CNRS Johan Mazel
CNRS Philippe Owezarski
IBBT Steven Latré
IBBT Stijn Melis
IBBT Bart Puype
IBBT Wim Van de Meerssche
INRIA Chadi Bakarat
INRIA Amir Krifa
UCL Benoit Donnet
UCL Mickaël Hoerdt
UCL Damien Saucez
ULg Guy Leduc
ULg Bruno Willemaers

List of figures and/or list of tables

Table 1. List of WP3 use cases ... 7
Table 2. List of WP4 use cases ... 7
Table 3. List of experimental scenarios by TO and use case 40
Table 4. Matrix summary of functional validation and performance analysis.. 43

Fig. 1. Experimental scenario interdependency 44
Fig. 2. External dependencies ... 44

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 4 / 47

Table of Contents

Executive Summary .. 2
List of authors .. 3
List of figures and/or list of tables 3
Table of Contents .. 4
1 Introduction .. 5

1.1 Relation to other ECODE deliverables 5
1.2 Scientific validity .. 5
1.3 Experimental scenarios ... 6

2 Monitoring and security ... 8
2.1 Adaptive traffic sampling and management 8
2.1.1 Running monitoring applications based on adaptive sampling 8
2.2 Path performance monitoring 11
2.2.1 Validation of the performance and accuracy of the monitoring system ... 11
2.3 Intrusion and attack / anomaly detection 14
2.3.1 Evaluation of the Anomaly Detection System (ADS) 14

3 Routing and recovery ... 17
3.1 Path availability ... 17
3.1.1 IDIPS ... 17
3.1.2 Internet Coordinate System .. 21
3.2 Network recovery and resiliency 24
3.2.1 OSPF SRG inference .. 24

4 Accountability ... 29
4.1 Profile-based accountability 29

5 Routing system ... 33
5.1 Routing system scalability 33
5.1.1 Run-time memory cost .. 35
5.1.2 Filtering of BGP messages ... 36
5.1.3 BGP transient overhead reduction 36
5.2 Routing system quality .. 38
5.2.1 Learning results .. 38

6 Summary .. 40
6.1 Scheduled experimentation 40
6.2 Functional and Performance validation criteria and metrics 40
6.2.1 Accuracy .. 40
6.2.2 Correctness ... 41
6.2.3 Timing .. 41
6.2.4 Stability ... 42
6.2.5 Scalability ... 42
6.2.6 Quality of Service .. 42
6.3 Experimental scenario relationships and dependence 43

Annex.1: Template ... 45

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 5 / 47

1 Introduction
The focus of the ECODE experimental research project is to introduce a new
Internet architectural component realized by means of a cognitive system
and that preserves the original Internet design principles, including the
end-to-end principle and its transparency, to sustain growth of an Internet
that remains in line with what it supposed to deliver to the end-user and
that performs in accordance to what it is expected to deliver to the end-
user. As the purpose of this new architectural component is to sustain
growth of an Internet that performs in accordance to what it is supposed to
deliver to the end-user and performs according to these expectations in
order to satisfy the end-users, large-scale testing and validation is
explicitly in the scope of this research project. Combined experimentation
will allow determining whether composing the Internet high-level goals -
societal, economical, etc. - can be translated into lower-level objectives
(in terms of functionality and performance) and constraints (both technical
and non-technical) and enforced via the newly introduced machine learning
component as part of the Internet routing system.

This second experimental phase will be conducted in physical experimental
infrastructures. For most experimentation, the machine learning engine will
be experimented and its performance evaluated by means of a dedicated and
fully controlled emulation platform: the iLab.t experimental facility,
located at IBBT premises.

1.1 Relation to other ECODE deliverables

This deliverable describes the experimental scenarios themselves, including
methodology, evaluation criteria, platform, tools, input data etc., and
this on a network (or scenario) level. Regardless of exact system
architecture and tools used, the experimental scenarios included here all
use the common XORP machine learning engine platform, which is detailed in
Deliverable D2.2 “Cognitive Engine - Experimental low-level design”.
Meaning, D2.2 provides a system level description of the experimentation,
stating the interfaces between machine learning engine (MLE), routing
engine (RE), forwarding engine (FE), management plane (MP) and translation
and communication (TCI) component.

As WP3 and WP4 entail the first and second experimental phase respectively,
this deliverable serves a function similar to the one of Deliverable D3.1
“Experimental Plans and Scenarios”. Some of the experimental scenarios are
a continuation of those already included in D3.1. WP3 defined three
technical objectives (TO). Evaluation of those TO1, TO2, TO3 was included
in deliverables D3.3, D3.5 and D3.7 respectively. As WP4 considers a common
machine learning engine platform, an integrated approach is followed for
the technical objectives, while WP4 tasks are defined towards goals.
Comparison of WP3 and WP4 technical objective use cases is provided in a
further section. Where necessary, the experimental scenario description
will refer back to relevant D3.1 descriptions.

1.2 Scientific validity

In WP4, experimentation goes beyond initial proof-of-concept of machine
learning as an advanced networking technique. Implementation and evaluation
of actual online machine learning is envisioned. The targeted evaluation
criteria will allow assessment of stability and scalability of these
techniques in realistic networking scenarios.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 6 / 47

In order to accept experimentation as a viable track in determining
performance and evaluation metrics, the experimental scenario and
methodology should be scientifically valid. Scientific validity includes
verifiability, reliability, repeatability and reproducibility.

Verifiability: an experiment is verifiable if the outcomes can be

verified against a formal model, meaning they match
models that describe the outcome as a function of the
experiment input parameter. In the case of functional
analysis, experiment flow and outcome match a prescribed
list of actions and/or output.

Reliability: reliability means the experiment and outcome are valid

for a certain time run. As a minimum requirement, this
means that the components of the experiment remain
functional (i.e., do not crash or break down) during this
time period. Furthermore, results and outcomes are
reliable if they remain consistent during that time
period (within a certain well-defined range).

Repeatability: the term repeatability is used when repeating the

experiment within the same experimental scenario, i.e.,
same platform, experimental facility, testbed, input
parameters, etc. The experiment is repeatable when
different runs of the experiment (repetitions) yield the
same outcome and results. Correct experimental
methodology and usage of models, algorithms and output
data processing is required in order to guarantee
repeatability.

Reproducibility: an experiment is reproducible when it can be reproduced

within a similar, but different experimental setup. This
can mean different platform, facility. Typically
reproducibility comes into play when a third party
performs the same experiment in order to verify
scientific validity of the outcome and results of the
experimental scenario.

Verifiability, reliability, repeatability and reproducibility of an
experimental scenario depend heavily on outcome values, which are in some
cases measured only within a certain range, and not exactly. Actual
experiments –including emulation experiments- often include some form of
non-determinism. The experimentation scenarios may validate only under
certain constraints (this is especially the case for repeatability and
reproducibility). Where necessary, this is mentioned in the scenario
descriptions.

1.3 Experimental scenarios

Within WP3, three technical objectives were defined, each consisting of
several use cases which cover different problems in representative areas,
identified as Internet architectural and design challenges (such as
security, controllability, routing, and accountability).

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 7 / 47

Table 1. List of WP3 use cases
TO Case Name

Case a1 Adaptive traffic (packet/flow) sampling
Case a2 Path performance monitoring

TO1 (D3.3)

Case a3 Distributed anomaly/intrusion detection
Case b1 Informed path selection
Case b2 Network-driven recovery and resiliency

TO2 (D3.5)

Case b3 Profile-based accountability
TO3 (D3.7) Case c Inter-domain routing/BGP

For WP4, these following use cases are defined within each of the technical
objectives (as per the Technical Annex):

Table 2. List of WP4 use cases
TO Case Name

Case a1 Adaptive traffic sampling and management
Case a2 Path performance monitoring

TO1

Case a3 Intrusion and attack / anomaly detection
Case b1 Path availability
Case b2 Network recovery and resiliency

TO2

Case b3 Profile-based accountability
Routing system scalability TO3 Case c
Routing system quality

The remainder of this deliverable describes experimental scenarios each
fitting within one of these use cases, clustered into four groups:

- Monitoring and security: corresponds to use cases a1, a2, and a3,
i.e., the development of an autonomous system for network
monitoring, traffic management, and anomalies detection.

- Routing and recovery: corresponds to use cases b1 and b2, i.e., the
development of a solution for ranked path selection and fast network
recovery.

- Accountability: corresponds to use case b3, i.e., the development of
a solution for correlating profiles with subscribers’ usage and
their impact on the network resources.

- Routing system: this corresponds to use case c, the development of a
solution for speeding up BGP path exploration, and determining
quality (correctness) of the solution.

Each experimental scenario description includes an experiment overview and
objectives. A detailed listing of (technical and non-technical)
constraints, expected results, evaluation criteria and metrics, setup,
tools, platform and methodology follows. Finally, scientific validity and
any constraints thereupon are stated.

The template used to obtain this information is available in Annex 1.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 8 / 47

2 Monitoring and security

2.1 Adaptive traffic sampling and management

2.1.1 Running monitoring applications based on adaptive sampling

Experimental scenario description
Title Running monitoring applications based on an adaptive sampling

approach
Technical objective The scenario builds further on the use case concerning

adaptive traffic sampling (TO1).
Machine learning is used to optimally configure the sampling
rate in monitors so as to reach the best measurement accuracy
at limited overhead. The information on flows will then be
used to manage them appropriately inside routers.

Participants INRIA, IBBT

Content
Short description We plan to deploy our architecture components on top of IBBT

iLab.t test bed. Namely our Traffic Monitoring and Sampling
Service and our Data Collection and Analysis service. The
later is supposed to be a centralized component that (i)
collects NetFlow reports sent by the monitoring and sampling
service installed in each monitor of the selected topology
and (ii) runs our ML algorithms which performs a given
monitoring solution and updates accordingly the monitor’s
configuration at runtime.

Then, using a range of topologies (GEANT and Abilene like
topologies), we want to evaluate different monitoring
applications.

Expected result(s) Our system is intended to provide an estimation of network
and traffic status. This estimation is afterwards used to
find a better configuration of monitors and controllers that
reduces measurements errors and improve the management of
flows inside routers. For instance, our platform can optimize
the monitoring to carry out the following measurements:

• The greediest users
• The number of packets per flow

Experimentation
Evaluation criteria
and metrics

The following evaluation criteria will be used:
• The network status estimation accuracy
• The traffic collection overhead
• In addition, the convergence time of the estimation and
the computation time are also two important parameters
that will be used as metric

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 9 / 47

Experimental scenario:
description, tools,
configuration and
running conditions

System structure and platform:

We will use IBBT iLab.t test bed running Linux. We will
install within the different routers our traffic monitoring
and sampling service. The later captures real traffic
promiscuously using the Pcap library. Then, using its
sampling module, it decides either to consider the captured
packet or not for updating the list of maintained flows.
Once some conditions (flows’ timers, number of constructed
flows, etc.) are satisfied our traffic monitoring services
will send NetFlow reports towards our data collection and
analysis service. We will need to install the later service
in a separated central node.

Network topology:

We need to setup either GEANT or Abilene like topologies
including 20 routers in average in addition to one central
node which will run our data collection and analysis service
(including the ML algorithm).

Experimental configuration:

Once the topology is available and our services are deployed,
we will need to configure locally our monitoring and sampling
service and to point them to the central collector node.

Methodology Methodology to obtain experimental data:

The experimentation methodology involves:

- Setting up an experimental topology (on the iLab.t
test bed).

- Deploying our traffic sampling and monitoring service
within all nodes considered as monitors.

- Deploying our data collection and analysis service on
a central separated node.

- Locally configuring the different services.
- Applying any traffic. We can either use a common

traffic with other partners or run ours using either
iLab.t test bed traffic generation tools (if existing)
or some third party tools like D-ITG (the Distributed
Internet Traffic Generator,
http://www.grid.unina.it/software/ITG/).

- Extracting experimental data.

Three main methodology tracks will be followed:

- Proof-of-concept: functional analysis of the NetFlow
reports collection from the different monitors, the
execution of our adaptive sampling algorithm within
our central service, and finally the re-configuration
of the deployed monitoring points. The planned public
demonstration will make use of this track.

- Performance analysis: by running batches of
experiments for various configuration parameters, and
experimental topologies, we will extract performance
metrics such as the network status estimation accuracy
and the traffic collection overhead.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 10 / 47

- Scalability analysis: for this track we concentrate on

topology size and the number of interfaces to be
monitored and we look at the resulting traffic
collection overhead and the time taken by our ML
algorithm to react and adjust monitors’ configuration.

Scientific validation
Verifiability One of the applications that we want to verify consists on

estimating the traffic generated by each Autonomous System
(AS). Once done, we can verify whether the weight we have
already associated to each AS is reflected in terms of the
amount of the traffic it generates.
We can also verify that the overhead resulting from the
experimentation we run does not exceed the target overhead
value that we have already fixed.

Reliability 1) Indicate key issues that may impact reliability. Which
external factors may invalidate the experimental results?
2) The collector node should be powerful enough (CPU, Memory
…) in order to cope with the big amount of the traffic it
collects from the different monitors and process.
If some delay is introduced - when processing the collected
traffic and extracting results – the decisions that the
collector would take in order to adapt the sampling rates
within the different monitors will be out of date.

Repeatability and
reproducibility

Unless the background traffic changes, we can reproduce the
same experimentation on the iLab.t platform.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 11 / 47

2.2 Path performance monitoring
2.2.1 Validation of the performance and accuracy of the monitoring system

Use case scenario description
Title Validation of the performance and accuracy of the monitoring

system
Technical objective Technical Objective 1. This objective relates to the

improvement of the manageability and diagnosability of the
Internet.

Participant(s) This scenario will be performed by LAAS/CNRS for the passive
monitoring system.

Content
Short description We want to setup an emulation network, generate traffic and

verify that our monitoring system is reliable, i.e., it
captures and reports every packet correctly (no missing
packet, no bit error, accurate timestamp).

Expected results The expected outcome of this setup is to build a reliable
passive monitoring system (i.e. no packet loss, no bit error,
accurate timestamp) that provides accurate and fast software-
based monitoring and measurement capability.

Experimentation
Evaluation criteria
and metrics

The two main criteria to enforce are: packet loss (i.e.
packets that are not captured) and accurate timestamps for
each captured packet. The two metrics we will use are: the
percentage of captured packets over the total number of
packets and the error on values of timestamps.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 12 / 47

Experimental
scenario: models,
platform,
configuration,
traffic, constraints

Machine Learning Engine:

The passive monitoring system aims at capturing packets on a
link and providing it online to the cognitive engine.

System structure and platform:

For validating the passive monitoring system, we need, for
providing a ground truth, a DAG system. Because of this
requirement in terms of a trustable hardware transparent
traffic capturing system, the evaluation is run on the
LaasNetExp experimental platform (Ilab does not provide such
hardware for capturing traffic).

The DAG system has been previously validated during the last
decade and proved to be very fast in capturing packets (and
then avoiding capture loss when the hosting machine is well
provisioned) with a very accurate GPS based timestamping
mechanisms. CNRS owns several of these DAG systems on its
LaasNetExp experimental platform. They will then be used to
evaluate the performance of accuracy of the passive software
monitoring system specifically designed and developed for
ECODE.

Network topology:

Practically speaking, our experimental scenario consists of
testing the monitoring tool on one host (to assess the
reliability of the capture and timestamping mechanisms).

For the validation, the following topology is be used.

Experimental configuration and input description:

We need to generate realistic traffic. For this purpose, we
will either replay previously captured traces or generate
traffic based on a realistic traffic model (as the Gamma-
Farima one that was developed in the framework of the French
MetroSec project by ENS Lyon and LAAS-CNRS).

The Operating system running on host is a Linux distribution.
The Tool to replay traces is either TCP Replay, or a tool
specifically developed by ourselves: nonglrd_gen.

Constraints:

We need a ground truth when capturing traffic to compare with
the one capture by our software monitoring tool. This
constraint is solved by the use of DAG systems available at
LAAS.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 13 / 47

Methodology Methodology to obtain experimental data:

Validating a monitoring system is quite impossible without
another trustable monitoring system. The principle of this
validation then relies on the use of a DAG system for
validating our software global monitoring and measurement
system. DAG system will provide the ground truth for assessing
our software monitoring tool.

For evaluating the monitoring entity we need to use a DAG
system on the same link, close from the monitoring entity to
be evaluated. Both tools capture the traffic. We then compare
the two traffic trace files, the DAG one being the ground
truth, and then evaluate our software monitoring tool
performance level.

Experimental data processing methodology and analysis:

We develop all necessary tools for analyzing them. These tools
have to compare the traces captured by a software monitoring
entity and the ones captured by DAG systems. It will consist
in checking that all packets are reported, and compute
difference between related timestamps.

Scientific validation
Verifiability DAG systems provide a ground truth about the traffic which

has been captured. The DAG trace is the reference which our
software based captures have to be compared against.

Reliability The DAG system has been proved to be very accurate and
reliable. It guaranties that our validation will be accurate
and reliable.

Repeatability and
reproducibility

As we are replaying traces or generating our own traffic
based on a model, we can repeat the experiments as many times
as needed.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 14 / 47

2.3 Intrusion and attack / anomaly detection
2.3.1 Evaluation of the Anomaly Detection System (ADS)

Use case scenario description
Title Evaluation of the Anomaly Detection System (ADS)
Technical objective Technical Objective 1. This objective relates to the

development of an anomaly detection system to improve Internet
security. By the proposed technique, we expect to improve the
performance in terms of false negative and false positive
rates

Participant(s) This scenario will be performed by LAAS/CNRS with a possible
collaboration with ULANC if distributed anomaly detection is
considered.

Content
Short description The objective is to evaluate the two proposed contribution

families to the improvements of the Anomaly Detection System
(ADS). The latter uses ML techniques in order to improve the
false alarm ratio traditionally encountered when using ADS in
the actual Internet. Thanks to ML, it is also aimed at
detecting 0-day anomalies. Here, the objective is thus
twofold:
1. Evaluate if the local Machine Learning (ML) techniques

aiming at better characterizing the traffic provide more
accuracy and efficiency in decision making;

2. Evaluate whether the system is able to detect anomalies it
does not know and is able to increase its knowledge
database

Expected results We expect to find lower false alarm ratios thanks to ML
techniques which are used for continuously learning about the
traffic characteristics. We also expect to generate new
detection rule as a reaction do the detection of previously
unknown anomalies.

Experimentation
Evaluation criteria
and metrics

The performance of the ADS will be evaluated on the false
negative and false positive rates. This is valid for both
known and 0-day anomalies.

The false negative rate is the ratio between the number of
undetected attacks over the total number of attacks. The false
positive rate is the ratio between the number of false alarms
over the total number of attacks.

Experimental
scenario: models,
platform,
configuration,
traffic, constraints

Machine Learning engine:

We develop a system including several algorithms using ML
techniques (in particular clustering techniques) for detecting
anomalies (previously known or even unknown – 0day anomalies)
on a single link. These system and algorithms are describes in
deliverables D3.2 and D3.3.

System structure and platform:

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 15 / 47

We will use several machines connected to a network on which
the access point is monitored by our ADS. These machines will
generate anomalies, e.g. flash crowd, DDoS attacks, of various
kinds, shapes and intensities. The ADS responses will then be
logged and its detection performance evaluated as presented in
the following.
We will use the LaasNetExp platform for small topologies (and
for setting up the methodology), and the Ilab cluster facility
for larger ones.

Network topology:

For evaluating the ADS, several network topologies with
different numbers of machines and different interconnection
topology could be necessary to emulate different aggregation
schemas. We will start from 2 machines generating traffic, and
go up to maybe 10 sources or more if possible.

Experimental configuration and input description:

Link characteristics on the topology will be the ones
classically observed on actual networks, except that we will
not introduce any loss as they are already represented in the
replayed traces when a packet is lacking. The delay
distribution can be something very simple as a classical
exponential function or any sub-exponential functions
generally observed in the Internet path delays as Weibull or
Pareto distributions.

It is important in such a scenario to be able to evaluate the
ADS based on documented traces, i.e. traces for which we know
at what moment, and for what duration there are anomalies in
the traffic, what kind of anomaly, their characteristics (as
intensity for example, number of sources or destination,
source and destination addresses, source and destination
ports, etc.). We will use the MetroSec dataset for this
purpose which is a set of traces containing documented
anomalies of any kinds. The MAWI dataset could be used as well
(despite it is not fully documented – anyway, it contains real
anomalies while the ones of the MetroSec dataset are kind of
artificial).

We also need a tool for injecting replayed traces in the
emulation network or use existing solutions as tcpreplay.

Constraints:

First, we need traces containing documented anomalies. The
MetroSec dataset provides a very reliable ground truth. MAWI
could also be used because the anomalies are not artificial.
Anyway, the anomaly documentation work can be prone to errors.

Second, a measurement and monitoring system is the basis for
providing inputs to the machine learning algorithms used in
the local ADS.

Methodology Methodology to obtain experimental data:

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 16 / 47

The ADS has to be evaluated with normal traffic without
anomalies, and with anomalous traffic. The anomalies in this
traffic can be legitimate as flash crowds or alpha flows, but
also illegitimate as DoS attacks, scanning, failures,
misconfigurations, etc. Among the DoS attacks or scanning
strategies, it would be requested to experiment as many
different kinds of attacks as possible (all kinds of flooding,
smurf, etc.).
We will use several machines connected to a network on which
the access point is monitored by our ADS. These machines will
generate anomalies, e.g. flash crowd, DDoS attacks, of various
kinds, shapes and intensities. The ADS responses will then be
logged and its detection performance evaluated as presented
right over.

The evaluation relies on calculating the false negative and
false positive rate based the ADS alarms raised when analyzing
the traffic of replayed documented anomalous traces.

The experimental data produced by the ADS under evaluation are
the log files of alarms raised by the local and global ADS.

Experimental data processing methodology and analysis:

The obtained log files will be compared with the list, time,
duration and characteristics of anomalies contained in the
replayed documented traces. The number of false alarms and
undetected attack is then trivial to compute.

Scientific validation
Verifiability Verifiability is enforced by the use of traces containing

documented anomalies. This documentation represents the
ground truth for this evaluation.

Reliability Given the ground truth provided by the documented traces, the
evaluation process is completely reliable.

Repeatability and
reproducibility

As we are replaying traffic traces, we can repeat the
experiments as many times as needed.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 17 / 47

3 Routing and recovery

3.1 Path availability
3.1.1 IDIPS

Experimental scenario description
Title IDIPS Use Case
Technical objective The scenario builds further on the IDIPS use case.

Machine learning is used to limit the number of measurements.
The machine learning technique takes the history of
measurements to predict the future performance of the paths.
IDIPS is a framework to determine the best among several
paths, for any definition of best.

Participant UCL

Content
Short description We implemented ISP-driven informed path selection (IDIPS) and

the least mean squares (LMS) filtering for path performance
prediction on the integrated XORP platform. Simulations have
shown that the LMS filtering is adequate for delay
prediction. We plan to test it in real time with concurrent
instances to see if LMS can be used in a real system with
plenty of simultaneous computations. In other words, we want
to be sure that the system is able to scale.

Expected result(s) A first result we expect is the confirmation that LMS
predictions are correct (i.e., the prediction error is
limited). We also expect to see a reduction of the number of
measurements to the different paths. Finally, we plan to see
how scalable the implementation is. At a first glance it
should be very scalable, but the dynamic of the path
performance could stress the implementation and we have to
see an upper bound for the system, regarding the load and the
dynamic.

Experimentation
Evaluation criteria
and metrics

The following evaluation criteria will be used:
- Scalability
- Prediction accuracy
- Stability
- Measurement load/measurements gain

Scalability is examined both in terms of the machine learning
engine (LMS) and the IDIPS framework.
The scalability of the machine learning engine consists of
observing the amount of resources consumed by the LMS models
for keeping the prediction models accurate. The resource
consumption is measured both in terms of memory and time. One
LMS model has to be kept for each path to predict performance
for, the amount of memory could vary with the dynamic of the
path, each model keeping track of the last observations. The

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 18 / 47

time consumption comes from the necessity to compute the
model parameter for each prediction by analyzing the last
observations.
The scalability of the IDIPS framework, if we are not
considering the machine learning part, is essentially driven
by the time complexity. Indeed, for each request, IDIPS has
to compute all possible paths, then query the machine
learning part to get the last predictions for finally ranking
and sorting the paths according to the rank that has been
computed for them. The spatial complexity for a given metric
is given by O(p + r*p_r) where p is the total number of paths
maintained by the system, r, the number of request and p_r,
the maximum number of paths per request.
Prediction accuracy is related to LMS. The prediction
accuracy represents the quality of the prediction, i.e., the
error made by the prediction with respect to the use of the
observed value. Prediction is used because the cost of
observing (i.e., measuring) is too important.
Stability is examined for path ranking. Along the time, the
performance of the path changes and requires re-computation
of the prediction model which may influence the final ranking
result. The stability aims at determining how ranking changes
along the time. A high stability means that ranking can be
cached, reducing so the time complexity (at the cost of a
space complexity) and thus increasing the request rate IDIPS
can handle. On the contrary, instability means that ranking
re-computation has to be performed all the time, reducing so
the request rate IDIPS can handle.
Measurement load/measurements gain is somewhat related to
stability. If a path is stable with respect to a metric, the
metric can be measured less often while keeping accuracy in
the predictions. On the contrary, an unstable path will
require more frequent observations to keep a good fitting
between the prediction and the reality. The prediction part
thus helps in reducing the number of measurements as it
adapts the measurement rate to only measure the path when
needed. Without a prediction system, the path has to be
measured every time a ranking is requested for it.
The two main concerns are the stability and the scalability,
which are somewhat related. In our simulation so far, each
path was considered independently of the others. In the
experimentation, we will perform tests with several paths to
rank in parallel.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 19 / 47

Experimental scenario:
description, tools,
configuration and
running conditions

Machine Learning engine:
The LMS filtering algorithm will be used for the
experimentation. Earlier studies have shown that both LMS and
ARMA-like techniques were working correctly for the delay,
but it has been determined that ARMA-like technique were to
costly to be able to use them in the IDIPS use case (it would
not scale).
System structure and platform:
We will use IBBT iLab.t test bed running XORP 1.7 on top of
Linux 64 bits. The testbed will be formed of two independent
IDIPS instances with up to 50 clients. The experiment will
only focus on the delay metric and the path availability (if
a path is not available it will be presented as non reachable
to the clients). The first step will consist of measuring
paths. Their performance is controlled by the path
performance controller facility from iLab.t. Once validated,
we will do the experiment by measuring path through the real
Internet via ADSL, cable, and fiber connectivity. The purpose
of having two IDIPS instances is to see if the computed
rankings are the same at each instance. The difference could
be caused by interferences between the two IDIPS measurements
parts. Some failures will be generated manually to determine
how fast the system can detect them.
Constraints:
A major constraint for the experimentation is that the
experimentation lab must be isolated of any other experiment
to be sure that no interference exists between the different
experiments.

Methodology Methodology to obtain experimental data:
The experimentation methodology involves:

- Setting up an experimental topology (on the iLab.t test
bed).

- Deploying the XORP platform on iLab.t.
- Configuring the IDIPS modules and the clients.
- Applying any client request behavior.
- Setting path performance alteration generator.
- Extracting experimental data.

Two main methodology tracks will be followed:

- Scalability analysis; several parameters influence the
scalability: the number of ranking requests to process
in parallel influence the state IDIPS has to keep, the
number of concurrent path that have to be ranked
influence the amount of data to be stored in IDIPS but
also the network load (the number of measurements to
perform).

- Accuracy analysis; IDIPS has to predict the delay for
paths and real paths have performance changing all the
time which may affect the prediction. Measuring and
predicting on the wild will provide a good prediction
accuracy analysis.

Experimental data processing methodology and analysis:
Log facilities are put in the IDIPS implementation to get all
the parameters and predictions.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 20 / 47

Scientific validation
Verifiability In parallel to the measurements and predictions performed by

IDIPS, the path delays can be monitored with other tools. The
ranking can then be performed mathematically based on the
observation from the monitoring tool.
The scalability can be estimated theoretically once we know
the dynamic of the path. We can then compare theoretical
results with the observations performed on the testbed.

Reliability The major reliability issue will come from the XORP scheduling
which does not ensure that the actions requiring time
information will be perfectly accurate.
IDIPS must be able to terminate ranking instances and path
measurements if they have not been used for a long time.
Without this, the state would increase forever and consume all
the memory. The evaluation will show the best timers to put on
this.

Repeatability and
reproducibility

For the fully generated delay, the repeatability and the
reproducibility of the experiment are trivial as all the
parameters of the testbed are controlled. For measurements
involving Internet paths, it is not evident that the
reproducibility will be easily achievable. However, we will
take care of analyzing the external parameters to see if the
experiment is representative or if they correspond to a
transient phase.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 21 / 47

3.1.2 Internet Coordinate System
Experimental scenario description
Title Internet Coordinate System experimentation
Technical objective Internet Coordinate Systems (ICS) are promising techniques to

predict unknown network distances (typically delays) between
any pair of nodes from a limited number of measurements. They
are distributed algorithms, actually distributed Machine
Learning Engines (MLEs), inferring together the missing
elements in an almost empty distance matrix, where the few
elements present in the matrix are the only distances actually
measured.

Participant(s) ULg

Content
Short description We have already implemented the classical Vivaldi ICS within

XORP as a reference. We are now implementing two other
modules:

- Our own ICS, designed in ECODE and denoted DMF (for
Decentralized Matrix Factorization), which is not based
on a Euclidian embedding and can therefore capture
asymmetric distances and triangular inequality
violations (TIV);

- A Triangular Inequality Violation (TIV) detector, which
allows finding routing shortcuts based on the ICS.

They will be tested in a realistic setting, to see how well
they perform and compare to the simulated results.

Expected result(s) We expect a validation of our implementations with similar
behaviors and results as the simulated ones.
We also expect that DMF will outperform Vivaldi, especially on
topologies with asymmetric distances and TIVs.

Experimentation
Evaluation criteria
and metrics

Experimental evaluation criteria:
− Distance prediction accuracy of the ICS
− Gain of discovered routing shortcuts

Distance prediction accuracy is the main evaluation criterion
for an ICS. We want to predict distances (delays) within the
network, and the more accurate the predictions are, the
better.
Our reference distance matrix will be obtained by active
measurement over all pairs of nodes on the testbed.
The internal information issued by the ICS algorithm about
estimated relative errors on the coordinates only gives a
first insight, which we can compare with the real errors.

In this context, we can use the same metrics as during
simulation, with di, j and ˆ d i, j being respectively the distance
from node i to j and its estimation:

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 22 / 47

-Cumulative Distribution of Relative Estimation Error

(REE)1, with REE =
ˆ d i, j − di, j| |

di, j

.

-Stress-12:
di, j − ˆ d i, j()2

i, j

∑
di, j

2

i, j

∑ .

-Median Absolute Estimation Error: mediani, j di, j − ˆ d i, j| |().

Gain of routing shortcut is related to the TIV detection and
inference of some better paths than the direct ones currently
used. For detected TIVs, it will give direct insight of how
well it performs. It is computed as the ratio between the best
shortcut we have detected, and the best path that actually
exists.

Experimental scenario:
models, platform,
configuration,
traffic, constraints

Machine learning engine:
Two ICS algorithms will be used for experimentation.

First, we will use the Vivaldi algorithm, which is already
implemented within XORP and see how it performs, and compares
to other real use cases of Vivaldi. Indeed, Vivaldi was
proposed some years ago and benefits from several actual
implementations, for example within Azureus – a bittorent
client – or Pyxida running across PlanetLab.

Second, once the implementation for the DMF algorithm is
ported to XORP, we will use it to perform a similar
experiment, with reference and feedback from the first
experimentation.

Eventually, we will use TIVs and shortcuts detection on both
coordinate systems.

System structure and platform:
We will use the IBBT iLab.t test bed with 64-bit Linux
machines running XORP 1.7(SVN) instances. We would use as many
nodes as possible on this testbed. Each one would have the
implementation of our ICS module, activated on multiple
network interfaces.

During performance of the experimentation, each ICS module
would log its coordinates and data needed to perform its
update, associated with a timestamp for later comparison and
analysis.

After validation on the IBBT iLab.t testbed, we could conduct
similar experiments over PlanetLab.

1 Notice that it might be interesting to compare them with the errors

estimated by the algorithms.
2 Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness

of fit to a nonmetric hypothesis. Psychometrika,29, 1-27.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 23 / 47

Traffic:
We will experiment the ICS under various traffic loads to
evaluate the impact of the traffic on our performance metrics.

Methodology Methodology to obtain experimental data:
First, we will set up an experimental network topology, with
XORP running on the hosts. We will activate ICS nodes
successively, giving the address of the first one started as a
bootstrap server.

We will test various topologies, including some with
asymmetric delays and TIVs, by engineering link delays and
link weights on the testbed.

We will let each node record within a local file the
successive coordinates and error the node is computing for the
experiment duration.

Experimental data processing methodology and analysis:
Experimental data collected will be processed to obtain a
delay matrix which will be compared to the one measured over
the experimental network topology. We will then compare both
matrices wrt our performance metrics.

Scientific validation
Verifiability Since exhaustive data will be recorded by each Vivaldi module

at each iteration, we will be able to verify the computation
of coordinate updates for each node, at each step.
Coordinates observed can be compared to the delays explicitly
measured during experiment.
Also, we can compare experimental results with results
obtained by simulation with the delay matrix from the
experiment.

Reliability Experimental results might be biased if we halt our experiment
soon after some failure within the network, considering that
we are using final data to our analysis. In such case, the
coordinate system would be in a state where some coordinates
are not yet updated and, therefore, delay predictions are not
accurate. To obtain reliable results, we must ensure that such
a failure has not happened soon before the recording of our
final data.

Repeatability and
reproducibility

All the configuration parameters of the testbed (topology,
delays, etc.) will be available. The boot order of the ICS
nodes will be given too.
While we can give our modus operandi to repeat our experiment,
operations from individual nodes, such as picking peers at
random for coordinates updates, are not reproducible. We can
expect to reach similar results, but not identical from one
experiment to another.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 24 / 47

3.2 Network recovery and resiliency
3.2.1 OSPF SRG inference

Experimental scenario description
Title OSPF SRG inference
Technical objective The scenario builds further on the use case concerning data

mining of OSPF updates to identify SRLGs (TO2).
Machine learning is used to infer Shared Risk Groups (SRG)
from correlated historic OSPF protocol messages. These SRGs
will be communicated to the OSPF protocol in order to reduce
failure recovery times.

Participants IBBT, ALB

Content
Short description We plan to implement the algorithms developed for OSPF event

modeling and clustering on the integrated XORP platform.
Using this implementation on a range of topologies, we want
to evaluate the modified OSPF process for failure recovery
using inferred SRGs.

Expected result(s) We expect that failures of links that are part of a SRG will
be detected significantly faster using the machine learning
engine, as OSPF does not have a mechanism to represent SRGs.
Furthermore, we expect the routing system to be more
scalable, since the SRG mechanism allows grouping, and thus
reducing the number of OSPF routing recalculations and
updates.

Experimentation
Evaluation criteria
and metrics

The following evaluation criteria will be used:
- Failure detection time
- Recovery time / convergence time
- User traffic packet loss
- Inference accuracy
- Stability
- Scalability

Failure detection time is the time between occurrence of a
SRG failure and the time said SRG is detected (reported) as
down in a node running the machine learning engine with OSPF
inference capability.
Recovery time is the time between occurrence of the failure
and re-establishment of end-to-end connectivity. User traffic
affected by the failure is lost during recovery time.
Alternatively, convergence time is the time between failure
occurrence and the last routing update related to the
failure; the network may or may not be recovered after
convergence.
Inference accuracy concerns how accurate the SRG inference
(prediction) is. OSPF inference will predict links as
failing; these predictions may or may not match protocol

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 25 / 47

messages (and link state) receive shortly after the failure.
Stability is to be examined both in terms of the machine
learning engine itself (SRG inference accuracy should not
deteriorate over time), as well as the routing system
(addition of SRG inference should not destabilize routing).
Our main concern with scalability for this experimentation
scenario is processing time, and how it relates to topology
size. We expect an OSPF processing time scaling better with
number of nodes, compared to the OSPF case without SRG
inference functionality. Processing time of routing updates
and shortest path tree calculation after failure can be
expressed as simply the number of routing recalculations
(since the actual processing time is hard to measure).

Experimental scenario:
description, tools,
configuration and
running conditions

Machine Learning engine:
Two algorithms developed earlier for OSPF event modeling and
data-mining will be used in the scenario:

- SRG state-space transition probabilities and LSA event
clustering

- SRG prediction from link failure correlation

System structure and platform:
We will use IBBT iLab.t test bed running XORP on top of
Linux. For some experiment tracks some end-user applications
(e.g. video streaming) will be used in order to visually
demonstrate recovery times.
The OSPF SRG inference functionality can be demonstrated
running on just one node in the network (receiving protocol
messages from regular OSPF nodes), or running on some/all
nodes of the network. Also, multiple nodes can rely on a
single machine learning engine instance (which in term can be
populated based on information from multiple nodes).
Functionality is required in order to emulate the failure of
links and SRGs (multiple concurrent failures).

Network topology:
As the experiments require recovery after failure, (at least)
bi-connected topologies are needed. Topologies of 4-5 nodes
are an absolute minimum in order to demonstrate basic
recovery for very small SRGs (e.g., 2 links).
Scalability analysis requires larger topologies. These may be
implemented by running the XORP platform on the desired
number of nodes of a large topology (containing the maximum
number of nodes needed for the scalability experiments).

Experimental configuration and input description:
Recovery using SRG inference can be demonstrated without
actual user traffic.
For experiments evaluating traffic loss, constant bit rate
traffic generators can be used.
For a possible (public) demonstration, we will use actual
traffic from e.g. a video-stream. This allows both
measurement (of traffic loss) as well as visual verification
of recovery times.

Constraints:
The handling of SRGs is done by failing multiple links at the
same time. No effort will be taken to emulate actual SRGs by,

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 26 / 47

for example, constructing OSPF links as connections that
share a common point of failure in some layer 2 connection-
oriented network.
OSPF interfaces can be configured in slightly different ways
each yielding more or less the same results in terms of end-
to-end connectivity. However, the configuration method
affects how LSAs are reported. Similarly, OSPF protocol
messages do not report failures; earlier work on OSPF event
modeling and data-mining assumed link failure messages. This
will be coped with using the translation/representation
functionality of the machine learning engine.

Methodology Methodology to obtain experimental data:

The experimentation methodology involves:

- Setting up an experimental topology (on the iLab.t
test bed).

- Deploying the XORP platform and SRG inference machine
learning instances.

- Configuring the OSPF modules for the topology (tools
will be used to do this automatically).

- Applying any user traffic.
- Generating failures according to (pre-determined)

SRGs.
- Extracting experimental data.

run

topologies traffic

recovery time

functional analysis
demonstration

scalabilityperformance

SRG failures

resource usagepacket loss

scalability:
topology size

demo: user application
functional: probe packets
performance: high bitrate performance:

SRG number & size

Three main methodology tracks will be followed:

- Proof-of-concept; i.e. functional analysis of SRG
inference, OSPF protocol message collection and SRG
prediction based OSPF rerouting. The planned public
demonstration will make use of this track.

- Performance analysis; by running batches of
experiments for various configuration parameters, SRG
sets and experimental topologies, we will extract end-
to-end performance metrics such as packet loss and
recovery times.

- Scalability analysis; for this track we concentrate on
topology size mainly (choosing a limited set of
configurations from the previous tracks), in order to
examine network system wide stability and scalability
(evaluation criteria as explained above)

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 27 / 47

Some state changes within the OSPF process are exposed
through OSPF messages. Additional monitoring points will be
used inside the OSPF module in order to log how OSPF state
(LSA database and pruned links) is updated when MLE SRG
inferences are pushed to the OSPF module. Monitoring points
may also be added in order to achieve more accurate timing of
OSPF recovery actions, as the corresponding OSPF messages may
be delayed for routing protocol stability reasons.

Experimental data processing methodology and analysis:

Experimental data will be gathered by examining:

- OSPF protocol messages and machine learning engine
information exchange;

- OSPF routing recalculation occurrences and outcome.
The above can be compared with unmodified OSPF; running the
same experimentation scenario on a vanilla OSPF area.

- Monitoring end-to-end packet loss
Link-based recovery time can be inferred from link local OSPF
messages (i.e., hello protocol). Generated datasets contain
the above information.

All these data will heavily depend on OSPF parameters and
topology size and structure. It is important to note that the
size and number of SRGs will also influence results. Since
multiple dimensions can be identified in SRG formation, this
will require particular attention.

Datasets that contain traces of OSPF messages, failure
messages, end-to-end packet loss etc. should be tagged with:

- used topology;
- set of SRGs used;
- OSPF parameters;
- failure occurrence parameters (e.g., IAT/HT for

exponentially distributed failures);
- type of traffic used in determining packet loss;

Scientific validation
Verifiability Recovery times can be verified using OSPF message exchange

analysis.
Gains seen in processing time (i.e., number or routing
recalculations) can be derived from size and number of SRG,
and topology size.

Reliability 1) Indicate key issues that may impact reliability. Which
external factors may invalidate the experimental results?
2) As the experimental scenario aims to improve resilience,
the OSPF modifications and machine learning engine processes
should remain stable on a time scale which supersedes MTBF of
the network links (i.e., months/years). Nevertheless, given
the distributed nature of OSPF, the modified OSPF and machine
learning engine should be able to cope with a node in the
OSPF area rebooting; this should not impact performance of
SRG inference in nodes that remain up.

Repeatability and Some of the timing results will depend heavily on OSPF timing
parameters. As such, these results will be a statistical

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 28 / 47

reproducibility function of these timing parameters. Expected results should
be stated within a range.
Reproducibility relies on proper implementation of the
interaction with the OSPF process; the default OSPF process
(as present in XORP) has been modified to incorporate SRG
inference predictions.
Also, since SRGs are emulated by failing several links at a
time, we should take care to construct realistic SRGs. When
reproducing the experiment on an actual L3-over-L2 network
scenario, with SRGs stemming from L2 routing and common
points-of-failure, this poses certain limitations on the
nature (number, size, span) of actual SRGs.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 29 / 47

4 Accountability

4.1 Profile-based accountability

Experimental scenario description
Title Profile based accountability
Technical objective The scenario is based on the Profile Based Accountability use

case (b3), initially developed in WP3.
The (machine-learning based) algorithmic options are the
identification of action profiles and the computation of the
subscriber profile in a profile learning and profile
prediction stage, will be continued and extended.

Participant(s) IBBT

Content
Short description We plan to:

1) Extend the existing clustering algorithm set with new
clustering algorithms and implement a deviation
function to detect a subscriber going out of profile.

2) Apply the “out of profile” information obtained from
the algorithms in the previous step and previous work
of case b3 (as reported in Deliverable D3.5) to the
routing and forwarding plane.

Expected result(s) When we are able to accurately classify out of profile
behavior from subscriber traffic, we can detect which
subscriber traffic is not behaving in a responsible way.
By adapting their scheduling and congestion control/AQM
parameters, we expect that resources allocation would enable
a better fairness between subscribers’ traffic flows
(depending on the local resource usage rate). More
specifically, we expect that the changes made to the router’s
scheduling algorithm will allow only penalizing (a set of)
traffic flows that are behaving "badly" (e.g. inappropriately
responsive or unresponsive to congestion notifications).

Experimentation
Evaluation criteria
and metrics

The following evaluation criteria will be used:
- Clustering accuracy
- Fairness
- Reaction time
- Efficiency

Clustering accuracy: as during this phase also new clustering
and classification algorithms will be investigated, the
accuracy of those newly developed algorithms will be
evaluated.
Fairness: In this use case, fairness means that subscriber’s
traffic (as result of TCP stack parameterization) which is
not behaving according to its profile receives the resources
it requested and only the subscribers’ traffic which is out

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 30 / 47

of profile is penalized. A metric for this fairness will be
defined and used as evaluation criteria.
Reaction time: When a subscriber’s traffic goes out of
profile, he should be penalized as quickly as possible in
order to statistically maintain a fair allocation of
resources for the other subscribers’ traffic. While
occasional spikes of “behaving badly” may be allowed, we
define the term going “out of profile” as behaving in such a
way that a reaction is required. This reaction time will be
evaluated and consists of a detection delay and reaction
delay.
Efficiency: The goal of the profile based accountability case
is to penalize out-of-profile subscribers’ traffic in favor
of in-profile subscribers’ traffic. The expectation is that
this in-profile subscribers’ traffic should be better
serviced than out-of-profile traffic without unduly reduced
resource sharing efficiency and link resource utility.

Experimental scenario:
models, platform,
configuration,
traffic, constraints

Machine learning engine:
Algorithms that were used during WP3 such as the C4.5
Decision Tree Classification algorithm will be used as well
but we also plan to investigate new ones, both for the
classification problem as for the deviation calculation. This
allows effectively characterizing the performance of the
earlier investigated algorithms through comparison.

System structure and platform:
We will use the IBBT iLab.t Virtual Wall test bed facility
running XORP or the Click Modular Router on top of Linux. The
experiments will be coupled with the traffic generation tool
that was designed and reported on in deliverable D3.5. This
traffic generation tool also foresees in the use of multiple
software programs:

- Apache web server
- Sirannon video server, designed by the IBBT
- VLC media player
- etc.

The profile based accountability algorithms can run on one
machine. However, multiple physical machines are needed to
emulate the behavior of different TCP stacks accurately.
Furthermore, the algorithms can also be deployed an multiple
nodes, in which each algorithm will work independently of the
others. Running this scenario on multiple nodes is also part
of this scenario.

Network topology:
As this scenario does not heavily rely on the routing
functionality but focuses more on the scheduling
functionality, there are no real requirements on the employed
topology.
However, for simplicity reasons, we investigate a butterfly-
based topology where a set of servers are connected to a set
of clients over one link. In order to have realistic data a
large amount of nodes (20+) are needed to emulate this
behavior. Initially, the number of servers will be fixed to
1, and the focus will be on the emulation of the clients. As
such, a defective TCP stack will be emulated on the client

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 31 / 47

side.

Experimental configuration and input description:
The evaluation and demonstration of the profile based
accountability functionality requires the emulation of
realistic subscriber traffic stacks. This emulation is
handled by employing multiple TCP implementations that are
provided by default in Linux. Typical examples include:

- TCP Westwood/Westwood/+
- TCP Tahoe/Reno/New Reno
- TCP BIC/CUBIC
- Etc.

Each of these TCP stacks can feature in-profile or out-of-
profile by enabling the ECN support. If the use of ECN bits
is ignored, then, although ECN is applied at the
communicating side and intermediate routers, the stack can be
regarded as defective (or unresponsive).
In the proposed scenario, a set of TCP stacks (on the client
side) will communicate with one specific TCP stack on the
server side. The various TCP stacks on the client side can be
turned defective, either at the start or the experiment or
during the experiment.
On the shared link between clients and servers, the PBA
algorithm will be deployed. The goal of this algorithm is to
detect the defective behavior of the TCP stacks while it
lasts, and react accordingly.

Methodology Methodology to obtain experimental data:
The methodology can be highly automated thanks to central
configuration of the traffic generation tool. This involves:

- Defining the network topology and link configurations
- Defining the scenarios to be investigated. The core

scenarios described above (Experimental configuration
and input description) are used and implemented with a
varying number of subscribers.

- Introducing traffic through the emulation of
subscriber behavior. This includes subscribers going
“out of profile” deliberately.

- Extracting experimental data

Experimental data processing methodology and analysis:
This experimental data will be used to train the machine
learning algorithms at which an adapted version of the
process will be executed. The process that will be followed
is:

- Defining the network topology and link configurations
- Defining the scenarios to be investigated. The core

scenarios described above (Experimental configuration
and input description) are used and implemented with a
varying number of subscribers. These scenarios may or
may not differ from the originally employed scenarios.

- Introducing traffic through the emulation of
subscriber behavior. This includes subscribers going
“out of profile” deliberately.

- Configuration of the machine learning algorithms and
configuration of the routing and forwarding planes of
the different routers. The profile based
accountability functionality will be able to steer the
scheduling functionality in the forwarding plane.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 32 / 47

- Extracting the evaluation metrics as described in
“Evaluation Criteria and Metrics”. This will be
largely automated through the use of the traffic
generation tool, which is also responsible for
steering the experimental setup.

Scientific validation
Verifiability Visualization of the experiment will be foreseen in order to

verify that the semantics of the experiment correspond with
the configuration of the experiment.
The behavior of subscribers can be verified by checking the
models used to implement this behavior. If necessary, real-
time behavior can be used as input to obtain more realistic
models.

Reliability The profile based accountability functionality relies heavily
on assumption made of how individual subscribers behave in
practice. The use of realistic traffic patterns is therefore
essential to obtain realistic results by means of the traffic
generation tool(s).

Repeatability and
reproducibility

As the traffic generation tool takes care of the
centralization of configuration in both the learning and
deployment step, the performed results are fairly easy to
repeat and reproduce as long as the traffic generation tool
is made available to the third party.
The traffic generation tool has been designed in such a way
that it operates in a closed loop system as much as possible.
Therefore, the traffic generation tool configures everything
starting from the operation system up to the behavior of
individual subscribers’ traffic and their corresponding TCP
stacks.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 33 / 47

5 Routing system

5.1 Routing system scalability

Our experiments are based on a “replay” of BGP monitoring traces. This
replay is possible by injecting BGP dumped messages into our implementation
of Path Exploration within XORP.

We do not collect ourselves BGP messages. Instead, as explained below, we
download BGP messages from the Routeview Project and RIPE BGP traces. As a
consequence, for a base experimental setting, a single machine running our
implementation into XORP is enough for performing the tests. The iLab.t
platform is thus not strictly necessary for re-playing the BGP traces
collected off-line. This explains why we consider use of stand-alone
machine(s).

Experimentation
Platform and input
data

System structure and platform:
For experiments using the Routeview project date, a single
box, with the following configuration:

- Operating System: Linux 64 bits, with kernel 2.6.28
- CPU: Intel Xeon E5430, quad-core
- 6 MB of L2 cache shared by pairs of cores
- 32 kB of L1 cache on each core
- 4.8 GB of main memory

For experiments using the RIPE BGP data, two servers with the
following configuration:

- OS: CentOS, with Linux Kernel 2.6
- CPU: Intel Quad-Core Xeon E5405, 2.6 GHz (12MB Cache)
- Memory: 32 GB DDR2-667 registered ECC (16 DIMMs)
- Disk: 4 Seagate 300 GB SAS drive, 15,000 rpm
- NIC: Intel® PRO/1000 PT Ethernet Server Adapter, 2x

RJ45, PCI-e

Experimental configuration and input description:

BGP updates are taken from the Routeview Project. We consider
one month of BGP Update (November 2009). These updates were
recorded from a total of 42 peers at the Oregon Routeview
monitor. The total number of Update message is about 89
millions BGP updates are taken from the RIPE Routing
Information Service (RIS). RIS is a RIPE NCC project that
collects and stores routing data from the Internet, on
several locations around the globe. RIS offers nice tools
bringing up this data to the Internet community. Raw data are
collected by the RRCs using Quagga routing software, stored
in MRT format. This format is described in the IETF document
entitled MRT routing information export format draft-ietf-
grow-mrt-11.txt). These files can be read using libbgpdump, a
library written in C, currently maintained by the RIPE NCC.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 34 / 47

The Scientific validation is the same for all experimental scenarios.

Scientific validation
Verifiability Decisions taken by the Learning algorithm can be verified

based on the MRT files from input. As we are “replaying” BGP
message traces, the decision taken can be easily verified.

Reliability In usual programs based on MRT feeds, BGP messages are all
injected at once. This creates an issue when one wants to
evaluate the efficiency of the learning based on measurements
that depends on time, such as the message arrival frequency.
Fortunately, MRT files contain a timestamp for each message.
We add a virtual clock inside the memory processing state.
This clock is modified dynamically on the fly according to
the timestamps contained in the MRT file. All measurements
are then based on that virtual clock.

Repeatability We use binary MRT files downloaded directly from the
Routeview website and RIPE NCC website
(http://www.ris.ripe.net/risreport/).

Our program can read them in bzip2 format or already
uncompressed. One can specify a single directory where all
the MRT files are stored (in this case, they will be
processed in an alphabetical order) or a single MRT file. All
BGP messages recorded in the MRT will be parsed, then
withdrawal instructions will be injected in the pipeline
(remind that the XORP BGP update processing is implemented as
a pipeline of XORP processing stages), followed by
announcement instructions along with the attributes contained
in the message.

Raw data are collected by the RRCs using Quagga routing
software, stored in MRT format. This format is described in
the IETF document entitled MRT routing information export
format draft-ietf-grow-mrt-11.txt). These files can be read
using libbgpdump, a library written in C, currently
maintained by the RIPE NCC. BGP UPDATE messages are parsed
and stored in the Adj-RIB-In, processed by the machine
learning algorithm. During the learning phase, the BGP UPDATE
messages are grouped per time window (Max_AS-Path – Min_AS-
Path) x MRAI per destination prefix, with MRAI being the
minimum route advertisement interval. The result of the
processing of the Adj-RIB-In entries replaces the default BGP
route selection process for that prefix.

Reproducibility Our experiments are easily reproducible as we consider well
known and freely available BGP data (Routeview Project and
RIPE RIS Raw BGP Data). As long as the same dataset is used
in input, the results are reproducible.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 35 / 47

5.1.1 Run-time memory cost

Experimental scenario description
Title Run-time memory cost
Technical objective The objective of this scenario is to evaluate the scalability

of implementing a learning algorithm to help the BGP Path
Exploration process.

Participants UCL, ALB

Content
Short description Evaluation of the scalability of our implementation in terms

of memory usage. Confront our implementation to real BGP
UPDATE messages.

Expected result(s) We want to determine if the memory cost explodes or if it
stays to a reasonable level. Ideally, the memory usage should
reach a stable stage at some point, meaning that the memory
usage does not grow infinitely.

Evaluation Criteria
and Metrics

The following metrics are considered:
- The number of distinct attributes (in terms of ML)
- The number of distinct network prefixes

managed/processed
- The memory usage (in MB)

We consider cases when the Memory processing stage is enabled
or not. When enabled, we vary the history size. Considered
values are: 2 attributes, 4 attributes, 5 attributes, and 10
attributes.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 36 / 47

5.1.2 Filtering of BGP messages

Experimental scenario description
Title Filtering of BGP messages
Technical objective Evaluation on how a better scalability can be reached by

filtering some BGP messages.
Participant UCL

Content
Short description We want to evaluate the impact of filtering some BGP messages

and determine whether such a filtering leads to a better
scalability.

There are mainly two reasons for filtering:

- Software routers (Quagga/Zebra) are often used to
collect BGP updates from remote peers with multi-hop
BGP sessions. They frequently suffer session resets
during which the entire BGP table has to be re-
transferred.

- We are only interested in Path Exploration generated by
AS_PATH modification. Therefore, any Path Exploration
triggered by modifications in some BGP attributes (such
as med or community) should be considered as noise.

In our filtering process, all the updates whose AS_PATH
attributes make no changes to BGP router table will be
filtered out.

Expected result(s) We expect a drop in the amount of BGP Update messages that
must be processed by our Path Exploration module. Acting so,
we believe we could achieve a better scalability by reducing
the amount of required memory

Evaluation Criteria
and Metrics

We consider the same metrics and criteria than those
previously exposed. In addition, we want to determine the
proportion of Updates messages filtered out.

5.1.3 BGP transient overhead reduction

Experimental scenario description
Title BGP transient overhead reduction
Technical objective Evaluation on how a better scalability can be reached by

removing BGP path exploration sequences
Participant ALB

Content
Short description With the proposed mitigation method, the BGP decision of the

route selection process is anticipated upon path exploration
event detection and identification (characterization). This
involves actions to suppress the churn on downstream nodes,

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 37 / 47

such as selecting the alternate best AS_Path to be advertised
to the BGP peers. Henceforth, this experiment measures, the
actual number of BGP UPDATE message per prefix as received by
a downstream BGP speaker.

Expected result(s) If the HMM-based machine learning algorithm performs as
expected, a downstream BGP speaker should not receive any BGP
UPDATE other than the next stable routing state.

Evaluation Criteria
and Metrics

The following metrics are used on the ML equipped server:
1. The number of actual path exploration events detected

(true positives). Note that we might encounter false
positives (i.e., a sequence of events is labeled as path
exploration while it is not the case) and false
negatives (i.e., a sequence of events is ignored while
it should have been labeled as path exploration).

2. The time required for the detection of path exploration
event.

3. The correctness of the selected path and the proportion
of correctness of selected AS_Paths: for the number of
path exploration events detected the number of events
for which the next stable sequence is returned in the
Loc-RIB and the Adj-RIB-Out.

4. The probability of selecting a wrong AS_Path and the
impact of selecting a wrong AS_Path. The impact of
selecting the wrong AS_Path is the deviation of the
wrongly selected AS path from the AS_Path that would be
selected after convergence (i.e. after full path
exploration phase). From this deviation an estimate can
be achieved on the number of AS's that will be affected
by that decision.

The following metrics are used on the downstream BGP node:

1. The number of actual path exploration events -not-
detected.

2. The time required for selecting the AS_Path as received
from the incoming BGP UPDATE message.

3. The correctness of the received AS_Path and the
proportion of correctness of received AS_Paths (as
selected by the upstream router).

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 38 / 47

5.2 Routing system quality
5.2.1 Learning results

Experimental scenario description
Title Learning results
Technical objective Demonstrate the feasibility of implementing machine learning

techniques within a real BGP router by using measurement's
history provided by the Memory processing stage.

Participants UCL, ALB

Content
Short description Evaluation of the performance of the C4.5 algorithm when

confronted to real data.
Evaluation of the performance of the HMM algorithm detailed
in D3.6. Note that additional improvements have been proposed
that account for non-exploratory withdrawal states.

Expected result(s) The proportion of correct decisions should be high enough.
A classifier is a function that maps observed AS-paths to BGP
state event classes. The goal of the learning process is thus
to find a function, i.e. a classifier, that correctly
predicts the class of topologically correlated AS-path(s)
with the minimum expected cost.
The cost function assesses the penalties associated to the
selection of BGP routes that contain (part of) the path
exploration sequence:

- missed path exploration events
- false positive detections: the classification declares

a path exploration event when in reality there is none;
such an error may typically occur when decision is
taken too rapidly

- and false negative detections: the classification does
not declare an event to be a path exploration event
when in reality it is; such an error typically occurs
when the decision is taken too slowly.

Evaluation Criteria
and Metrics

We evaluate the performance of the C4.5 algorithm as follows:
- First, we look at the Beacon messages coming from two

different ASes (AS3549 and AS852). The machine learning
algorithm, in such as case, is applied on a per peer
basis.

- Second, we consider the history coming from several
peers at the same time. This dataset is obtained by
merging the sequences of all BGP updates coming from
all the 42 peers available at the Oregon Routeview
monitor.

Metrics considered are the learning set error ratio and the
test set error ratio.

The following metrics are measured on the ML equipped server:

1. The number of path exploration events detected (true
positives), the rate of false positives (i.e., a
sequence of events is labeled as path exploration while

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 39 / 47

it is not the case) and false negatives (i.e., a
sequence of events is ignored while it should have been
labeled as path exploration).

2. The time required for the detection of path exploration
event.

3. The correctness of the selected path: for the number of
path exploration events detected the number of events
for which the next stable sequence is returned in the
Loc-RIB and the Adj-RIB-Out.

Experimentation
Platform and input
data

System structure and platform:
Same hardware setup as for scalability experiments.

Experimental configuration and input description:

Two sources of input are considered:
1. We consider BGP messages from the Routeview project.

Two months of data are used: November and October 2009.
The data used to train the C4.5 machine learning
algorithm is based on Beacons. A BGP Beacon is an
unused prefix which has a well-defined schedule for
announcement and withdrawal. The pattern used by the
Beacons is very simple: a network prefix is announced
at time t to be finally withdrawn at time t+2h. The
beacon we consider are those announced by the RIPE NCC
consortium.

2. We also consider the BGP messages from the BGP RIS Raw
Data of the RIPE NIS project. Four separate months of
data are used: April’09, July’09; October’09,
January’10 and April 2010 as training set. These data
are collected at Amsterdam (AMS-IX), Otemachi, Japan
(DIX-IE) and Stockholm, Sweden (NETNOD)

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 40 / 47

6 Summary
6.1 Scheduled experimentation

The following table lists the experimental scenario described in previous
sections, sorted by Technical Objective and use case. Partner(s)
responsible for the scenario and related section in this deliverable is
given as a quick reference.

Table 3. List of experimental scenarios by TO and use case
TO Case Experimental Scenario Section Partner(s)

a1 Running monitoring applications based
on adaptive sampling

2.1.1 INRIA, IBBT

a2 Validation of the performance and
accuracy of the monitoring system

2.2.1 LAAS/CNRS

TO1

a3 Evaluation of the Anomaly Detection
System (ADS)

2.3.1 LAAS/CNRS
(ULANC)

IDIPS 3.1.1 UCL b1
Internet Coordinate System 3.1.2 ULg

b2 OSPF SRG inference 3.2.1 IBBT, ALB

TO2

b3 Profile-based accountability 4.1 IBBT, ALB
Run-time memory cost 5.1.1 UCL, ALB
Filtering of BGP messages 5.1.2 UCL
BGP transient overhead reduction 5.1.3 ALB

TO3 c

Learning results 5.2.1 UCL, ALB

6.2 Functional and Performance validation criteria and metrics

In addition to proof-of-concept experimentation, each of the experimental
scenarios is used to perform functional and performance validation thanks
to the definition of validation criteria and metrics, as summarized below.
6.2.1 Accuracy

Accuracy appears as both monitoring accuracy (monitoring data matches
actual traffic and events, or matches third-party monitoring traces) as
well as detection/prediction accuracy (detection rates, number of false
positives, etc.). In the context of this deliverable, accuracy should not
be confused with correctness (next section).

i) Monitoring accuracy

Running monitoring applications based on adaptive sampling (INRIA, IBBT):
Network status estimation accuracy measures how well the adaptive sampling
results into an accurate estimation of actual network status.

Validation of the performance and accuracy of the monitoring system
(LAAS/CNRS):
Data from the monitoring system is compared against actual traffic. A DAG
system is used as base-line monitoring tool.

ii) Detection accuracy

Evaluation of the Anomaly Detection System (ADS) (LAAS/CNRS; ULANC):
Detection accuracy of anomalies is examined through detection rates, false
positive/negative rates, and rate of undetected attacks. Detection of the
ADS will be compared with traffic traces.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 41 / 47

Profile-based accountability (IBBT):
The clustering accuracy of new clustering and classification algorithms is
examined.

BGP transient overhead reduction (ALB) - Learning results (UCL, ALB):
Detection accuracy for path exploration events, as well as false positives
and false negatives is considered. Actual occurrence of path exploration
events is extracted from the fixed BGP input data.

iii) Prediction accuracy

IDIPS (UCL):
Impact of limiting the number of measurements on accuracy of delay
predictions is analyzed. Predicted delays are compared with path delay
measurement samples.

Internet Coordinate System (ULg):
Prediction accuracy of network distances (delays) are compared with delay
measurements on the testbed topologies.

OSPF SRG inference (IBBT):
Prediction accuracy of shared risk groups is defined as rate of correct
predictions, false positives and false negatives. The predictions can be
analyzed by applying non-concurrent SRG failures to the scenario.
6.2.2 Correctness

The usage of a machine learning engine and executing machine learning
algorithms impacts the correctness of the outcome and actions of networking
techniques. The machine learning engine can be used to provide faster, more
scalable solutions, in which case the outcome may suffer in correctness.
Alternatively, the objective of using the machine learning engine and ML
algorithms may lie in reaching functionality that performs better than
traditional techniques; in this case correctness is a performance metric.

i) Correctness as requirement

BGP transient overhead reduction (ALB) – Learning results (UCL, ALB):
The correctness of selected path and AS_paths may be impacted by the
removal of BGP path exploration sequences.

ii) Correctness as performance gain

Evaluation of the Anomaly Detection System (ADS) (LAAS/CNRS; ULANC):
Correctness is defined through the ability of the ADS to detect unknown (0-
day) anomalies.

Internet Coordinate System (ULg):
Higher correctness (shorter paths) is reached by finding routing shortcuts
which can be found from the ICS using a triangular inequality violation
detector.

6.2.3 Timing

Timing of actions initiated by the machine learning engine generally has a
direct impact on network user experience. Reaction times, recovery times

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 42 / 47

and detection times are the main performance metrics considered. Timing may
be related to stability.

Running monitoring applications based on adaptive sampling (INRIA, IBBT):
Reaction time needed to readjust configuration of the monitors.

OSPF SRG inference (IBBT):
Firstly, SRG failure detection time is considered; this time is determined
by the number of link failure events (in the same SRG) needed to predict
the SRG as failed. Secondly, total failure recovery (i.e., re-establishment
of connectivity) time is considered.

Profile-based accountability (IBBT):
Reaction time taken to changes in user traffic which exceed the profile.

BGP transient overhead reduction (ALB) – Learning results (UCL, ALB):
Detection time of path exploration events.
6.2.4 Stability

Stability can be expressed against a number of performance metrics.

IDIPS (UCL):
Stability in terms of measurement load and gain.

OSPF SRG inference (IBBT):
Stability in terms of prediction accuracy over time (i.e., total number of
recorded failures).

6.2.5 Scalability

Scalability can be expressed against a number of performance metrics. Also
scalability is expressed against one or more scenario parameters (e.g.,
topology, input traffic).

Running monitoring applications based on adaptive sampling (INRIA, IBBT):
Scalability in terms of traffic collection overhead, against topology size
and number of interfaces.

IDIPS (UCL):
Scalability against number of requests, number of concurrent paths.

OSPF SRG inference (IBBT):
Scalability in terms of number of OSPF messages, memory usage and
processing time, against topology size.

Run-time memory cost (UCL, ALB):
Scalability in terms of memory usage, number of prefixes and attributes.

Filtering of BGP messages (UCL):
As above, additionally impact of filtering on scalability is examined.

6.2.6 Quality of Service

QoS is a performance metric which is directly noticeable by the network
users.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 43 / 47

OSPF SRG inference (IBBT):
End-to-end packet loss during failures is determined.

Profile-based accountability (IBBT):
Impact of traffic exceeding the profile on QoS of traffic of other users is
examined. Related to this, fairness is considered as well.

Table 4. Matrix summary of validation criteria and metrics

Mo
ni
to

ri
ng
 a
cc

ur
ac
y

de
te
ct

io
n
ac
cu

ra
cy

Pr

ed
ic

ti
on
 a
cc

ur
ac
y

Co
rr
ec

tn
es
s
(r

eq
.)

Co

rr
ec

tn
es
s
(g

ai
n)

ti

mi
ng

st

ab
il

it
y

sc
al
ab

il
it
y

Qo
S

a1 Running monitoring applications based on adaptive sampling
a2 Validation of the performance and accuracy of the monitoring system
a3 Evaluation of the Anomaly Detection System (ADS)

IDIPS b1 Internet Coordinate System
b2 OSPF SRG inference
b3 Profile-based accountability

Run-time memory cost
Filtering of BGP messages
BGP transient overhead reduction c
Learning results

6.3 Experimental scenario relationships and dependence

The diagram in Fig. 1 shows dependence and relationships between the
experimental scenarios within the ECODE project.

The diagram in Fig. 2 outlines dependencies of the experimental scenarios
on software, tools, input topologies, traffic traces and testbed setups
external to the ECODE project.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 44 / 47

adaptive sampling

monitoring system

ADS

IDIPS

ICS
OSPF SRG inf.

PBA

BGP: Memory cost

BGP: filtering

BGP: transient

BGP: learning

Dedicated
platform (BGP)

Dedicated
platform (mon.) iLab.t

ECODE traffic
generation tool

similar scenarios

u
s
e
s

uses

uses

similar scenarios

u
s
e
s

 Fig. 1. Experimental scenario interdependency

adaptive sampling

monitoring system

ADS

IDIPS

ICS OSPF SRG inf.

PBA

BGP: Memory cost

BGP: filtering

BGP: transient

BGP: learning

BGP Routeview
BGP traces

testbeds

BGP RIPE NIS
BGP traces

End-user
applications

PlanetLab

LaasNetExp

XORP 1.7
(SVN)

tcpreplay

nonglrd_gen

MetroSec
traces

Abilene
topology
GEANT

topology

DAG system
D-ITG

Pcap

input

tools and software

 Fig. 2. External dependencies

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 45 / 47

Annex.1: Template
Experimental scenario description
Title A meaningful title for the experimentation
Technical objective Indicate which technical objectives (use cases) will be used

for the experimental scenario.
Task Indicate which WP4 task the experimental scenario will

contribute to.
Participant(s) Indicate who will be performing this scenario and whether

they would prefer or need to interact with other partners for
accomplishing this scenario.

Content
Short description What do you plan to experiment in more detail than the title

and less detail than the remainder (experimental scenario)
Expected result(s) 1) What do you expect to find as results?

2) Why would this be the case?

Experimentation (possibly refer to D3.1)
Evaluation criteria
and metrics

Describe the experimental evaluation criteria, and metrics.

Experimental scenario:
models, platform,
configuration,
traffic, constraints

Machine learning engine:
List the algorithms and models to be used in the machine
learning engine implementation for the scenario. Refer to
earlier work done for use cases/technical objectives; explain
machine learning approaches that will be introduced in this
experimentation track

System structure and platform:
1) Describe the experimentation platform (test bed) used for
the scenario. Include any hardware and/or applications that
interact directly with the machine learning engine during the
experimentation.
2) Does the implementation interact with implementations from
other use cases (by other ECODE participants)?
3) Is the machine learning engine process distributed over
multiple machines?
4) Does the experimental scenario require any machine to be
terminals?
5) Is there any functionality missing from the test bed
platform that must be implemented for the experimental
scenario?

Network topology:
1) What types of network topologies are required for the
experiment?
2) What type of connectivity is needed between machines?
3) How many machines are needed?

Experimental configuration and input description:
1) For the experiment list:

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 46 / 47

- background traffic
- events (including failures)

to be emulated.
2) What are their characteristics?
3) Is the traffic available as a model, as a traffic trace,
or will a user application be used instead (‘real traffic’)?

Constraints:
1) Does the choice of the above (platform, topology, traffic,
etc.) pose any constraints?
2) Does the test bed platform require some abstractions or
short-cuts to be taken in the emulation?
3) Are there any special configuration issues to take into
account?
4) Is there a confidentiality requirement for some of the
experimentation data?
5) Does the XORP platform itself pose any limits concerning
accurate timing, throughput, etc.?
6) Are there any protocol particularities that collide with
abstractions made during earlier work?

Methodology Methodology to obtain experimental data:

1) Flowchart of the experimental scenario with the functional
blocks indicated.
2) Provide an indicative description of the experimentation
running time (per step if possible).
3) If the experimentation scenario will be used for multiple
experimentation tracks (e.g. functional analysis, performance
evaluation, etc.), does each track require a different
methodology?
5) Does obtaining the evaluation metrics and performance
metrics require external measurement and tools? On the other
hand, if these are obtaining from the XORP platform, do the
measurements require any extensions to the platform?

Experimental data processing methodology and analysis:

1) Describe here the methodology for processing and comparing
the experimental data (e.g. against reference scenario).
2) If experimental data is collected as a dataset for further
processing, describe what type of data is collected (dataset
format), and mention how datasets should be identified for
processing and analysis (tagging/metadata: input parameters,
topology, experiment run time, person doing the experiment,
etc.)
3) Provide detailed description of the analysis to be
performed on the obtained data (including sensitivity
analysis). - Note in case data analysis requires use of a
specific tool, please indicate which tool.

Scientific validation
Verifiability 1) Which formal models will be used in order to verify

outcomes of the experiment?
2) How do the experiment scenario and evaluation criteria map
to clear definitions that can be used in a formal model.

FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine

Deliverable 4.1 Page 47 / 47

Reliability 1) Indicate key issues that may impact reliability. Which
external factors may invalidate the experimental results?
2) What kind of reliability (time scale) is aimed for in the
experimental scenario?

Repeatability State which steps are taken to ensure that the experimental
scenario can be repeated by the scenario participants.

Reproducibility State which steps are taken to ensure that the experimental
scenario can be reproduced by third parties.
Which blocking issues may prevent other ECODE partners or
external parties from reproducing the experimental scenario?

